OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8873–8876

Nested fiber ring resonator enhanced Mach–Zehnder interferometer for temperature sensing

Changqiu Yu, Yundong Zhang, Xuenan Zhang, Kaiyang Wang, Chengbao Yao, Ping Yuan, and Yudong Guan  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8873-8876 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the properties of the nested fiber ring resonator coupled Mach–Zehnder interferometer as a sensor. By introducing the phase bias of 0.5π in the reference arm, the two output intensities exhibit sharp asymmetric line shapes around the resonance wavelength. Utilizing the intensity interrogation, we analyze the effect of parameters on the sensitivity and the detection limit. For the 30 dB signal-noise system, the sensitivity and the detection limit can achieve 4.0866/°C and 7.341×103°C, respectively; the results indicate that this structure is suitable for high-sensitivity measurements.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optical Devices

Original Manuscript: October 10, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: November 18, 2012
Published: December 20, 2012

Changqiu Yu, Yundong Zhang, Xuenan Zhang, Kaiyang Wang, Chengbao Yao, Ping Yuan, and Yudong Guan, "Nested fiber ring resonator enhanced Mach–Zehnder interferometer for temperature sensing," Appl. Opt. 51, 8873-8876 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979). [CrossRef]
  2. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010). [CrossRef]
  3. J. Ju, L. N. Ma, W. Jin, and Y. M. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors.” Opt. Lett. 34, 1861–1863 (2009). [CrossRef]
  4. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  5. D. X. Dai and S. L. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009). [CrossRef]
  6. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach–Zehnder interferometer,” Opt. Lett. 30, 3069–3071 (2005). [CrossRef]
  7. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527 –1529 (2003). [CrossRef]
  8. J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, Y. X. Cai, J. Zhang, and P. Yuan, “Enhancing the sensitivity of fiber Mach–Zehnder interferometers using slow and fast light,” Opt. Lett. 36, 3173–3175 (2011). [CrossRef]
  9. S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007). [CrossRef]
  10. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008). [CrossRef]
  11. S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .
  12. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006). [CrossRef]
  13. L. J. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add–drop filters in silicon microring resonator-coupled Mach–Zehnder interferometers,” Opt. Lett. 32, 781–783 (2007). [CrossRef]
  14. S. Q. Feng, X. S. Luo, S. W. Du, and A. W. Poon, “Electro-optical tunable time delay and advance in a silicon feedback-microring resonator,” Opt. Lett. 36, 1278–1280 (2011). [CrossRef]
  15. M. Terrel, M. J. F. Digonnet, and S. H. Fan, “Ring-coupled Mach–Zehnder interferometer optimized for sensing,” Appl. Opt. 48, 4874–4879 (2009). [CrossRef]
  16. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001). [CrossRef]
  17. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited