OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 4 — Feb. 1, 2012
  • pp: 465–473

White-light interferometry on rough surfaces—measurement uncertainty caused by noise

Pavel Pavliček and Ondřej Hýbl  »View Author Affiliations


Applied Optics, Vol. 51, Issue 4, pp. 465-473 (2012)
http://dx.doi.org/10.1364/AO.51.000465


View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

White-light interferometry on rough surfaces is an optical method for the measurement of the geometrical form of objects. The longitudinal coordinate of the measured surface is obtained from the measured interferogram by means of an evaluation method. However, the longitudinal coordinate cannot be determined completely accurately because the interferogram is affected by noise. We calculate the lower limit of the longitudinal measurement uncertainty caused by noise by use of the Cramer–Rao inequality. Additionally, we calculate the lower limit of the longitudinal measurement uncertainty caused by shot noise only.

© 2012 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(100.2000) Image processing : Digital image processing
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Image Processing

History
Original Manuscript: August 11, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: November 10, 2011
Published: January 26, 2012

Citation
Pavel Pavliček and Ondřej Hýbl, "White-light interferometry on rough surfaces—measurement uncertainty caused by noise," Appl. Opt. 51, 465-473 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-4-465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990). [CrossRef]
  2. B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990). [CrossRef]
  3. T. Dresel, G. Haüsler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef]
  4. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993). [CrossRef]
  5. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994). [CrossRef]
  6. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996). [CrossRef]
  7. G. Häusler, P. Ettl, M. Schenk, G. Bohn, and I. Laszlo, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 74, pp. 328–342.
  8. G. Häusler, “Speckle and Coherence,” in Encyclopedia of Modern Optics, B. D. Guenther, ed. (Elsevier, Academic, 2005), pp. 114–123.
  9. P. Ettl, B. Schmidt, M. Schenk, I. Laszlo, and G. Häusler, “Roughness parameters and surface deformation measured by coherence radar,” Proc. SPIE 3407, 133–140 (1998). [CrossRef]
  10. Z. Saraç, R. Gross, C. Richter, B. Wiesner, and G. Haüsler, “Optimization of white light interferometry on rough surfaces based on error analysis,” Optik 115, 351–357 (2004). [CrossRef]
  11. G. Haüsler, “Three-dimensional sensors—potential and limitations,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, and P. Geissler, eds. (Academic, 1999), pp. 485–506.
  12. M. Hering, K. Körner, and B. Jähne, “Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty,” Appl. Opt. 48, 525–538 (2009). [CrossRef]
  13. M. Fleischer, R. Windecker, and H. J. Tiziani, “Theoretical limits of scanning white-light interferometry signal evaluation algorithms,” Appl. Opt. 40, 2815–2820 (2001). [CrossRef]
  14. M. Fox, Quantum Optics (Oxford University, 2006).
  15. B. Jähne, “Continuous and digital signals,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, and P. Geissler, eds. (Academic, 1999), pp. 9–34.
  16. T. Seiffert, “Verfahren zur schnellen Signalaufnahme in der Weisslichtinterferometrie,” Ph.D. dissertation (University Erlangen-Nuremberg, 2007).
  17. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).
  18. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2003).
  19. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2004).
  20. L. Kubáček, Foundations of Estimation Theory (Elsevier, 1988).
  21. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 9–75.
  22. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2000).
  23. M. Fleischer, R. Windecker, and H. J. Tiziani, “Fast algorithms for data reduction in modern optical three-dimensional profile measurement systems with MMX technology,” Appl. Opt. 39, 1290–1297 (2000). [CrossRef]
  24. A. K. Ruprecht, T. F. Wiesendanger, and H. J. Tiziani, “Signal evaluation for high-speed confocal measurements,” Appl. Opt. 41, 7410–7415 (2002). [CrossRef]
  25. T. Wilson, Confocal Microscopy (Academic, 1990).
  26. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48, 3998–4002 (2009). [CrossRef]
  27. S. K. Nayar and Y. Nakagawa, “Shape from focus,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 824–831 (1994). [CrossRef]
  28. Y. An, G. Kang, I.-J. Kim, H.-S. Chung, and J. Park, “Shape from focus through Laplacian using 3D window,” in Proceedings of IEEE Second International Conference on Future Generation Communication and Networking (IEEE, 2008), pp. 46–50.
  29. R. Onodera, H. Watanabe, and Y. Ishii, “Interferometric phase-measurement using a one-dimensional discrete Hilbert transform,” Opt. Rev. 12, 29–36 (2005). [CrossRef]
  30. M. Kendall, A. Stuart, and J. K. Ord, The Advanced Theory of Statistics (Charles Griffin, 1983).
  31. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer Academic, 1991).
  32. P. Pavliček and O. Hýbl, “White-light interferometry on rough surfaces—measurement uncertainty caused by surface roughness,” Appl. Opt. 47, 2941–2949 (2008). [CrossRef]
  33. T. Dresel, “Grundlagen und Grenzen der 3D-Datengewinnung mit dem Kohärenzradar,” Master’s thesis (University Erlangen-Nuremberg, 1991).
  34. R. Gross, O. Hýbl, B. Knapp, and G. Häusler, “Ultrafast 4-Megapixel white-light interferometry,” in DGaO Proceedings (German Society for Applied Optics, 2009), http://www.dgao-proceedings.de/download/110/110_p17.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited