Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-dimensional mapping of the electron density in laser-produced plasmas

Not Accessible

Your library or personal account may give you access

Abstract

We performed two-dimensional (2D) mapping of the electron density in a laser-produced plasma with high spatial and temporal resolution. The plasma was produced by irradiating an aluminum target with 1064 nm, 6 ns pulses from a Nd:YAG laser under vacuum conditions. Stark broadening of the lines was used to estimate the electron density at various locations inside the plasma. The 2D spectral images were captured at different spatial points in the plasma using an imaging spectrograph coupled to an intensified CCD at various times during the plasma expansion. A comparison between radially averaged and radially resolved electron density profiles showed differences in the estimated values at the earlier times of plume evolution and closer distances to the target. However, the measured radially averaged values are consistent with 2D radial profiles at later times and/or farther distances from the target surface.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-channel technique for Stark measurements of electron density within a laser-produced sodium plasma

Mark A. Cappelli and Raymond M. Measures
Appl. Opt. 23(13) 2107-2114 (1984)

Stoichiometric investigations of laser-ablated brass plasma

D. N. Patel, P. K. Pandey, and R. K. Thareja
Appl. Opt. 51(7) B192-B200 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved