OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 4 — Feb. 1, 2012
  • pp: A1–A10

Speckle orientation in paraxial optical systems

Dayan Li, Damien P. Kelly, Raoul Kirner, and John T. Sheridan  »View Author Affiliations


Applied Optics, Vol. 51, Issue 4, pp. A1-A10 (2012)
http://dx.doi.org/10.1364/AO.51.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The statistical properties of speckles in paraxial optical systems depend on the system parameters. In particular, the speckle orientation and the lateral dependence ( x and y ) of the longitudinal speckle size can vary significantly. For example, the off-axis longitudinal correlation length remains equal to the on-axis size for speckles in a Fourier transform system, while it decreases dramatically as the observation position moves off axis in a Fresnel system. In this paper, we review the speckle correlation function in general linear canonical transform (LCT) systems, clearly demonstrating that speckle properties can be controlled by introducing different optical components, i.e., lenses and sections of free space. Using a series of numerical simulations, we examine how the correlation function changes for some typical LCT systems. The integrating effect of the camera pixel and the impact this has on the measured first- and second-order statistics of the speckle intensities is also examined theoretically. A series of experimental results are then presented to confirm several of these predictions. First, the effect the pixel size has on the measured first-order speckle statistics is demonstrated, and second, the orientation of speckles in a Fourier transform system is measured, showing that the speckles lie parallel to the optical axis.

© 2012 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(050.1940) Diffraction and gratings : Diffraction
(110.6150) Imaging systems : Speckle imaging
(070.7345) Fourier optics and signal processing : Wave propagation

History
Original Manuscript: October 3, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: November 30, 2011
Published: January 25, 2012

Citation
Dayan Li, Damien P. Kelly, Raoul Kirner, and John T. Sheridan, "Speckle orientation in paraxial optical systems," Appl. Opt. 51, A1-A10 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-4-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Leushacke and M. Kirchner, “Three-dimensional correlation coefficient of speckle intensity for rectangular and circular apertures,” J. Opt. Soc. Am. A 7, 827–832 (1990). [CrossRef]
  2. Q. B. Li and F. P. Chiang, “Three-dimensional dimension of laser speckle,” Appl. Opt. 31, 6287–6291 (1992). [CrossRef]
  3. T. Yoshimura and S. Iwamoto, “Dynamic properties of three-dimensional speckles,” J. Opt. Soc. Am. A 10, 324–328 (1993). [CrossRef]
  4. H. T. Yura, S. G. Hanson, R. S. Hansen, and B. Rose, “Three-dimensional speckle dynamics in paraxial optical systems,” J. Opt. Soc. Am. A 16, 1402–1412 (1999). [CrossRef]
  5. J. E. Ward, D. P. Kelly, and J. T. Sheridan, “Three-dimensional speckle size in generalized optical systems with limiting apertures,” J. Opt. Soc. Am. A 26, 1855–1864 (2009). [CrossRef]
  6. D. P. Kelly, J. E. Ward, B. M. Hennelly, U. Gopinathan, F. T. O’Neill, and J. T. Sheridan, “Paraxial speckle-based metrology system with an aperture,” J. Opt. Soc. Am. A 23, 2861–2870 (2006). [CrossRef]
  7. D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O’Neill, and J. T. Sheridan, “Generalized Yamaguchi correlation factor for coherent quadratic phase speckle metrology systems with an aperture,” Opt. Lett. 31, 3444–3446 (2006). [CrossRef]
  8. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications, 1st ed. (Roberts, 2007).
  9. X. Zhao and Z. Gao, “Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction,” Opt. Lasers Eng. 47, 1307–1316(2009). [CrossRef]
  10. D. N. Naik, R. K. Singh, T. Ezawa, Y. Miyamoto, and M. Takeda, “Photon correlation holography,” Opt. Express 19, 1408–1421 (2011). [CrossRef]
  11. D. Li, D. P. Kelly, and J. T. Sheridan, “Three-dimensional static speckle fields. Part I. Theory and a numerical investigation,” J. Opt. Soc. Am. A 28, 1896–1903 (2011). [CrossRef]
  12. D. Li, D. P. Kelly, and J. T. Sheridan, “Three-dimensional static speckle fields. Part II. Experimental investigation,” J. Opt. Soc. Am. A 28, 1904–1908 (2011). [CrossRef]
  13. D. P. Kelly, J. E. Ward, U. Gopinathan, and J. T. Sheridan, “Controlling speckle using lenses and free space,” Opt. Lett. 32, 3394–3396 (2007). [CrossRef]
  14. M. Sjödahl and L. R. Benckert, “Systematic and random errors in electronic speckle photography,” Appl. Opt. 33, 7461–7471 (1994). [CrossRef]
  15. D. P. Kelly, J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Quantifying the 2.5D imaging performance of digital holographic systems,” J. Eur. Opt. Soc. Rapid Pub. 6, 11034 (2011). [CrossRef]
  16. M. Lehmann, “Phase-shifting speckle interferometry with unresolved speckles: a theoretical investigation,” Opt. Commun. 128, 325–340 (1996). [CrossRef]
  17. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques, 1st ed. (Wiley, 2001).
  18. H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987). [CrossRef]
  19. M. Abramowitz and A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. (Dover, 1972).
  20. S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010). [CrossRef]
  21. Wolfram Research, http://www.wolfram.com/ .
  22. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  23. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques, 1st ed. (Springer, 2004).
  24. D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006). [CrossRef]
  25. Mathworks, http://www.mathworks.com/help/toolbox/images/ref/normxcorr2.html .
  26. H. T. Yura, S. G. Hanson, and T. P. Grum, “Speckle: statistics and interferometric decorrelation effects in complex ABCD optical systems,” J. Opt. Soc. Am. A 10, 316–323 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited