OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 6 — Feb. 20, 2012
  • pp: 697–703

Holographic polymer dispersed liquid crystal enhanced by introducing urethane trimethacrylate

Nahid Hosein Nataj, Ezeddin Mohajerani, Hossein Jashnsaz, and Ali Jannesari  »View Author Affiliations


Applied Optics, Vol. 51, Issue 6, pp. 697-703 (2012)
http://dx.doi.org/10.1364/AO.51.000697


View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work characterizes holographic polymer dispersed liquid crystals (HPDLC) composite material based on a new monomer, urethane trimethacrylate, by fabricating switchable diffraction grating. The highest diffraction efficiency achieved was 90.3%. Details of the fabrication and preliminary results of electro-optical switching of the HPDLC diffraction gratings are presented and discussed based on the functionality of the monomer. These experimental results are explained by means of morphological scanning electron microscopy analyses.

© 2012 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(160.3710) Materials : Liquid crystals

ToC Category:
Holography

History
Original Manuscript: July 25, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 17, 2011
Published: February 13, 2012

Citation
Nahid Hosein Nataj, Ezeddin Mohajerani, Hossein Jashnsaz, and Ali Jannesari, "Holographic polymer dispersed liquid crystal enhanced by introducing urethane trimethacrylate," Appl. Opt. 51, 697-703 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-6-697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. S. Drazic, Liquid Crystal Dispersions (World Scientific, 1995).
  2. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000). [CrossRef]
  3. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004). [CrossRef]
  4. G. S. He, T. C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83, 2733–2735 (2003). [CrossRef]
  5. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003). [CrossRef]
  6. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Volume hologram formation in liquid-crystal/photopolymer mixtures,” Proc. SPIE 5216, 34–43 (2003). [CrossRef]
  7. L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE 4107, 46–58 (2000). [CrossRef]
  8. G. Fiske, L. D. Silverstein, J. Colegrove, and H. Yuan, “H-PDLC color separation device for image capture systems,” SID Symp. Dig. Tech. Papers 31, 1134–1137 (2000).
  9. A. K. Fontecchio, C. C. Bowley, and G. P. Crawford, “Improvement in holographically-formed polymer dispersed liquid crystal performance through acrylated monomer functionality studies,” Proc. SPIE 3800, 36–44 (1999). [CrossRef]
  10. F. Vita, D. E. Lucchetta, R. Castagna, L. Criante, and F. Simoni, “Effects of resin addition on holographic polymer dispersed liquid crystals,” J. Opt. A 11, 024021 (2009). [CrossRef]
  11. A. Y. Fuh, T. C. Ko, M. S. Tsai, C. Y. Huang, and L. C. Chien, “Dynamical studies of gratings formed in polymer-dispersed liquid crystal films,” J. Appl. Phys. 83, 679–683 (1998). [CrossRef]
  12. H. Duran, S. Meng, N. Kim, J. Hu, T. Kyu, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Kinetics of photopolymerization-induced phase separation and morphology development in mixtures of a nematic liquid crystal and multi-functional acrylate,” Polymer 49, 534–545 (2008). [CrossRef]
  13. T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiolene polymer dispersed liquid crystals (PDLCs),” Macromolecules 40, 1112–1120 (2007). [CrossRef]
  14. K. Beev, L. Criante, D. E. Lucchetta, F. Simoni, and S. Sainov, “Recording of evanescent waves in holographic polymer dispersed liquid crystals,” J. Opt. A 8, 205 (2006). [CrossRef]
  15. M. S. Malcuit, M. E. Holmes, and M. A. Rodriguez, “Characterization of PDLC holographic gratings,” in Conference on Lasers and Electro-Optics (OSA, 2002), pp. 395–396.
  16. R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30, 592–594 (2005). [CrossRef]
  17. G. Cipparrone, A. Mazzulla, and G. Russo, “Diffraction gratings in polymer-dispersed liquid crystals recorded by means of polarization holographic technique,” Appl. Phys. Lett. 78, 1186–1188 (2001). [CrossRef]
  18. M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001). [CrossRef]
  19. A. d’Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405–1407 (2004). [CrossRef]
  20. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004). [CrossRef]
  21. M. DeSarkar, N. L. Gill, J. B. Whitehead, and G. P. Crawford, “Effect of monomer functionality on the morphology and performance of the holographic transmission grating recorded on polymer dispersed liquid crystals,” Macromolecules 36, 630–638 (2003). [CrossRef]
  22. C. Serbutoviwz, J. G. Kloosterboer, H. M. Boots, and F. J. Touwslager, “Polymerization-induced phase separation. 2. Morphology of polymer-dispersed liquid crystal thin films,” Macromolecules 29, 7690–7698 (1996). [CrossRef]
  23. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997). [CrossRef]
  24. R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer 41, 733–741 (2000). [CrossRef]
  25. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, and J. L. Koenig, Physical Properties of Polymers (American Chemical Society, 1984).
  26. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: Materials, formation, and applications,” Adv. Optoelectron. 2008, 684349 (2008). [CrossRef]
  27. V. K. S. Hsiao, and W. T. Chang, “Optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) gratings,” Appl. Phys. B 100, 539–546 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited