OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 789–802

System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications

Maurizio Burla, Chris G. H. Roeloffzen, Leimeng Zhuang, David Marpaung, Muhammad Rezaul Khan, Peter Maat, Klaas Dijkstra, Arne Leinse, Marcel Hoekman, and René Heideman  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 789-802 (2012)
http://dx.doi.org/10.1364/AO.51.000789


View Full Text Article

Enhanced HTML    Acrobat PDF (2239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we describe the system integration and the experimental demonstration of a photonically beamformed four-element receiving array antenna for radio astronomy applications. To our knowledge, the work described here is the first demonstration of the squint-free, continuously tunable beamsteering capability offered by an integrated photonic beamformer based on optical ring resonator true-time-delay units, with measured radiation patterns. The integrated beamformer is realized in a low loss, complementary metal-oxide-semiconductor (CMOS) compatible optical waveguide technology. The measurements show a wideband, continuous beamsteering operation over a steering angle of 23.5 degrees and an instantaneous bandwidth of 500 MHz limited only by the measurement setup.

© 2012 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(130.0130) Integrated optics : Integrated optics
(280.5110) Remote sensing and sensors : Phased-array radar
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(070.5753) Fourier optics and signal processing : Resonators
(130.6622) Integrated optics : Subsystem integration and techniques

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 24, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: November 28, 2011
Published: February 17, 2012

Citation
Maurizio Burla, Chris G. H. Roeloffzen, Leimeng Zhuang, David Marpaung, Muhammad Rezaul Khan, Peter Maat, Klaas Dijkstra, Arne Leinse, Marcel Hoekman, and René Heideman, "System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications," Appl. Opt. 51, 789-802 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-789


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tiuri, “Radio astronomy receivers,” IEEE Trans. Antennas Propag. 12, 930–938 (1964). [CrossRef]
  2. G. Heald, T. Oosterloo, and M. Verheijen, “The science case for APERTIF,” presented at the BYU Phased Array Antenna Workshop, Provo, Utah, 3–5May2010.
  3. D. B. Hayman, T. S. Bird, K. P. Esselle, and P. J. Hall, “Experimental demonstration of focal plane array beamforming in a prototype radiotelescope,” IEEE Trans. Antennas Propag. 58, 1922–1934 (2010). [CrossRef]
  4. N. A. Riza and J. B. Thompson, Selected Papers on Photonic Control Systems for Phased Array Antennas (SPIE Milestone, 1997).
  5. A. J. Seeds and K. J. Williams, “Microwave photonics,” IEEE J. Lightwave Tech. 24, 4628–4641 (2006).
  6. R. Benjamin and A. J. Seeds, “Optical beam forming techniques for phased array antennas,” in IEEE Proceedings on Microwaves, Antennas and Propagation (IEEE, 1992), pp. 526–534.
  7. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996). [CrossRef]
  8. A. P. Goutzoulis and J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997). [CrossRef]
  9. R. Palacio, F. Deborgies, and P. Piironen, “Optical distribution of microwave signals for Earth observation satellites,” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2010), pp. 74–77.
  10. D. Yap, O. Efimov, K. Geary, and J. Schaffner, “Compact electro-optic modulator for direct integration into an X-band antenna array front-end,” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2010), pp. 35–38.
  11. M. Burla, M. R. H. Khan, L. Zhuang, and C. G. H. Roeloffzen, “Multiwavelength optical beam forming network with ring resonator-based binary-tree architecture for broadband phased array antenna systems,” in Proceedings of IEEE/LEOS Benelux Symposium (IEEE, 2008), pp. 99–102.
  12. D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased-array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998). [CrossRef]
  13. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: Design and performance analysis,” J. Lightwave Technol. 28, 3–18(2010).
  14. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28, 19–31 (2010).
  15. S. Chin, L. Thevenaz, J. Sancho, S. Sales, J. Campany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef]
  16. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009). [CrossRef]
  17. M. Burla, M. R. H. Khan, D. A. I. Marpaung, C. G. H. Roeloffzen, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. G. Heideman, “Squint-free beamsteering demonstration using a photonic integrated beamformer based on optical ring resonators,” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2010), pp. 401–404.
  18. T. Mengual, B. Martnez, B. Vidal, and J. Marti, “Wide-band nulling system for antenna array based on a photonic microwave filter and optical delay lines,” Opt. Commun. 282, 3878–3882 (2009). [CrossRef]
  19. P. J. Matthews, P. Liu, J. B. Medberry, M. Y. Frankel, and R. D. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microwave Theory Tech. 47, 1327–1331 (1999). [CrossRef]
  20. G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040–3046 (2003). [CrossRef]
  21. R. A. Minasian and K. E. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech. 45, 1513–1518 (1997). [CrossRef]
  22. H. Matsuzawa, T. Akiyama, H. Sumiyoshi, T. Iguchi, M. Nagase, Y. Shoji, Y. Fujino, A. Akaishi, and R. Suzuki, “Variable spot scanning antenna using optically controlled beam forming network,” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2010), pp. 35–38.
  23. S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microwave Theory Tech. 54, 402–411 (2006). [CrossRef]
  24. L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. McKenzie, and J. M. del Cura, “Optically beamformed wideband array performance,” IEEE Trans. Antennas Propag. 56 , 1594–1604 (2008). [CrossRef]
  25. A. Molony, L. Zhang, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microwave Theory Tech. 45, 1527–1530 (1997). [CrossRef]
  26. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, and M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995). [CrossRef]
  27. M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J. L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M. S. Choi, J. H. van den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broad-band wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006). [CrossRef]
  28. C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra-long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46, 754–761(2010). [CrossRef]
  29. T. Akiyama, K. Inagaki, T. Ohira, and M. Hikita, “Two-dimensional optical signal-processing beamformer using multilayer polymeric optical waveguide arrays,” IEEE Trans. Microwave Theory Tech. 49, 2055–2061 (2001). [CrossRef]
  30. R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H. Tsai, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005). [CrossRef]
  31. M. K. Smit, Y. S. Oei, F. Karouta, R. Nötzel, J. H. Wolter, E. A. J. M. Bente, X. J. M. Leijtens, van der Tol, M. T. Hill, H. J. S. Dorren, G. D. Khoe, and J. J. M. Binsma, “Photonic integrated circuits: where are the limits?,” in Integrated Photonics Research and Applications Technical Digest (Optical Society of America, 2005), paper IWB1.
  32. L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. C. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007). [CrossRef]
  33. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005). [CrossRef]
  34. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]
  35. P. D. Patel, D. W. Kant, E. Wal, and A. van Ardenne, “Phased array antennas demonstrator as a radio telescope—EMBRACE,” in Proceedings of IEEE Antennas and Propagation Society International Symposium 2008 (IEEE, 2008), p. 14.
  36. G. W. Kant, P. D. Patel, S. J. Wijnholds, M. Ruiter, and E. van der Wal, “EMBRACE: A multi-beam 20,000-element radio astronomical phased array antenna demonstrator,” IEEE Trans. Antennas Propag. 59, 1990–2003 (2011). [CrossRef]
  37. R. E. Collins, Antennas and Radiowave Propagation (McGraw-Hill, 1986).
  38. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 48, 1352–1360 (2000). [CrossRef]
  39. J. L. Corral, J. Marti, and J. M. Fuster, “Optical up-conversion on continuously variable true-time-delay lines based on chirped fiber gratings for millimeter-wave optical beamforming networks,” IEEE Trans. Microwave Theory Tech. 47, 1315–1320 (1999). [CrossRef]
  40. D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microwave Theory Tech. 54, 861–867 (2006). [CrossRef]
  41. B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16, 2398–2404(2008). [CrossRef]
  42. P. Quang Thai, A. Alphones, and D. R. Lim, “Limitations by group delay ripple on optical beam-forming with chirped fiber grating,” J. Lightwave Technol. 27, 5619–5625(2009).
  43. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  44. R. C. Hansen, Phased Array Antennas (Wiley, 1998).
  45. M. Burla, C. G. H. Roeloffzen, D. A. I. Marpaung, M. R. H. Khan, and W. van Etten, “A novel design procedure for minimum RF phase error in optical ring resonator based integrated optical beamformers for phased array antennas,” in Proceedings of IEEE/LEOS Benelux 2010 (IEEE, 2010), pp. 245–248.
  46. R. G. Heideman, D. H. Geuzebroek, A. Leinse, A. Melloni, F. Morichetti, C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, W. van Etten, E. J. Klein, and A. Driessen, “Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing,” in Proceedings of 13th European Conference on Integrated Optics (IEEE, 2007).
  47. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170(2011). [CrossRef]
  48. D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, and B. Sanadgol, “Towards a broadband and squint-free Ku band phased array antenna system for airborne satellite communications,” in Proceedings of the Fifth European Conference on Antennas and Propagation (IEEE, 2011), pp. 2274–2778.
  49. N. M. Froberg, E. I. Ackerman, and C. H. Cox, “Analysis of signal to noise ratio in photonic beamformers,” in Proceedings of IEEE Aerospace Conference 2006 (IEEE, 2006).
  50. H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer,” Appl. Opt. 47, 6448–6452 (2008). [CrossRef]
  51. K. Daikoku and A. Sugimura, “Direct measurement of wavelength dispersion in optical fibres-difference method,” Electron. Lett. 14, 149–151 (1978). [CrossRef]
  52. D. Marcuse, Principles of Optical Fiber Measurements(Academic, 1981), pp. 279–281.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited