OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 898–904

Polarization-independent optical circulator for high accuracy Faraday depolarization lidar

Tatsuo Shiina, Kazuo Noguchi, and Tetsuo Fukuchi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 898-904 (2012)
http://dx.doi.org/10.1364/AO.51.000898


View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high precision, polarization-independent optical circulator was developed for high accuracy Faraday depolarization lidar. Glan laser prisms and other novel optics were utilized in the circulator optics, resulting in a high extinction ratio of polarization of >30dB. High accuracy is needed to detect a small rotation angle in the polarization plane of the propagating beam. It is generated by the Faraday effect due to the lightning discharge. The developed circulator delivered high performance of insertion loss and isolation as laser transmitter and echo receiver in the inline lidar optics.

© 2012 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(220.4830) Optical design and fabrication : Systems design
(230.2240) Optical devices : Faraday effect
(230.5440) Optical devices : Polarization-selective devices
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: August 19, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 22, 2011
Published: February 28, 2012

Citation
Tatsuo Shiina, Kazuo Noguchi, and Tetsuo Fukuchi, "Polarization-independent optical circulator for high accuracy Faraday depolarization lidar," Appl. Opt. 51, 898-904 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999). [CrossRef]
  2. E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998). [CrossRef]
  3. T. Halldorsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978). [CrossRef]
  4. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979). [CrossRef]
  5. N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).
  6. R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005). [CrossRef]
  7. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Experiment,” Appl. Opt. 44, 7407–7413 (2005). [CrossRef]
  8. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Theoretical approach,” Appl. Opt. 44, 7467–7473 (2005). [CrossRef]
  9. T. Shiina, E. Minami, M. Ito, and Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002). [CrossRef]
  10. A. Nakago and T. Shiina, “Low-altitude cloud and atmosphere observations with an in-line typed micro pulse lidar for local weather change,” Appl. Opt. (submitted).
  11. K. Kawahata and S. Okajima, “Interferometry and polarimetry -principle of interferometry and polarimetry-,” Jpn. Soc. Plasma Sci. Nucl. Fusion Res. 76, 845–847 (2000) (in Japanese).
  12. D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasma,” Rep. Prog. Phys. 32, 207–271(1969). [CrossRef]
  13. T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).
  14. T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).
  15. Wing-huen Ip, ed. Advances in Geosciences (World Scientific, 2009), Vol. 10, Chap. 12.
  16. T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).
  17. T. Fukuchi and T. Shiina, “Measurement of rotation of polarization plane of laser radiation propagating through impulse discharge in air,” IEEE J. Trans. Electr. Electron. Eng. 5, 82–86 (2010).
  18. P. C. Fletcher and D. L. Weisman, “Circulators for optical radar systems,” Appl. Opt. 4, 867–873 (1965). [CrossRef]
  19. M. Shirasaki, H. Kuwahara, and T. Obokata, “Compact polarization-independent optical circulator,” Appl. Opt. 20, 2683–2687 (1981). [CrossRef]
  20. Y. Okamura, T. Negami, and S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984). [CrossRef]
  21. Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000). [CrossRef]
  22. A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001). [CrossRef]
  23. T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006). [CrossRef]
  24. R. M. Measures, Laser Remote Sensing (Wiley, 1984).
  25. T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited