OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 905–911

Optical pressure sensor based on the combined system of a variable liquid lens and a point diffraction interferometer

Anmi García, Manuel Gómez, and Eva Acosta  »View Author Affiliations


Applied Optics, Vol. 51, Issue 7, pp. 905-911 (2012)
http://dx.doi.org/10.1364/AO.51.000905


View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an experimental efficient optical pressure sensor based on a variable liquid lens and a modified point diffraction interferometer. The working principle of the sensor is based on the fact that a variation in pressure induces a change in lens curvature and hence in its focal length, which can be tracked and measured with the interferometer. The pressure is then measured by recording and processing the interferometric images. The sensor in this proposal can change its dynamic range by the simple axial movement of one of the components of the optical system. In this work we show the performance of the system within three working ranges: from 0 to 1 kPa with accuracy of approximately 0.01 kPa, from 0 to 7 kPa with 0.05 kPa accuracy, and from 0 to 30 kPa with 0.3 kPa accuracy.

© 2012 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 7, 2011
Manuscript Accepted: October 19, 2011
Published: February 28, 2012

Citation
Anmi García, Manuel Gómez, and Eva Acosta, "Optical pressure sensor based on the combined system of a variable liquid lens and a point diffraction interferometer," Appl. Opt. 51, 905-911 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-7-905


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Halg, “A silicon pressure sensor with a low-cost contactless interferometer optical readout,” Sensors Actuators A 30, 225–230 (1992). [CrossRef]
  2. Q. Wang and Q. Yu, “Polymer diaphragm based sensitive fiber optic Fabry–Perot acoustic sensor,” Chin. Opt. Lett. 8, 266–269 (2010).
  3. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010). [CrossRef]
  4. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010). [CrossRef]
  5. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993). [CrossRef]
  6. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996). [CrossRef]
  7. S. Calixto, F. J. Sánchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008). [CrossRef]
  8. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. Martínez-Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009). [CrossRef]
  9. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005). [CrossRef]
  10. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606(2010). [CrossRef]
  11. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138–2149 (2004). [CrossRef]
  12. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007). [CrossRef]
  13. B. Berge and J. Perseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000). [CrossRef]
  14. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 851128–1130 (2004). [CrossRef]
  15. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006). [CrossRef]
  16. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photon. 2, 610–613 (2008). [CrossRef]
  17. C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995). [CrossRef]
  18. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003). [CrossRef]
  19. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009). [CrossRef]
  20. S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010). [CrossRef]
  21. E. Acosta, S. Chamadoira, and R. Blendowske, “Modified point diffraction interferometer for inspection and evaluation of ophthalmic components,” J. Opt. Soc. Am. A 23, 632–637 (2006). [CrossRef]
  22. R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).
  23. A. K. Aggarwal and S. K. Kaura, “Further applications of point diffraction interferometer,” J. Opt. 17, 135–137 (1986). [CrossRef]
  24. C. Koliopoulos, O. Kwon, R. Shagam, J. C. Wyant, and C. R. Hayslett, “Infrared point diffraction interferometer,” Opt. Lett. 3, 118–120 (1978). [CrossRef]
  25. P. Naulleau, K. A. Goldberg, E. M. Gullikson, and J. Bokor, “At-wavelength, system-level flare characterization of extreme ultraviolet optical systems,” Appl. Opt. 39, 2941–2947 (2000). [CrossRef]
  26. E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010). [CrossRef]
  27. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed. (Gatesmark, 2009).
  28. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited