OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 7 — Mar. 1, 2012
  • pp: 963–974

Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements

Vern P. Hart, Timothy E. Doyle, Michael J. Taylor, Brent L. Carruth, Pierre-Dominique Pautet, and Yucheng Zhao  »View Author Affiliations

Applied Optics, Vol. 51, Issue 7, pp. 963-974 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new methodology is presented to create two-dimensional (2D) and three-dimensional (3D) tomographic reconstructions of mesospheric airglow layer structure using two-station all-sky image measurements. A fanning technique is presented that produces a series of cross-sectional 2D reconstructions, which are combined to create a 3D mapping of the airglow volume. The imaging configuration is discussed and the inherent challenges of using limited-angle data in tomographic reconstructions have been analyzed using artificially generated imaging objects. An iterative reconstruction method, the partially constrained algebraic reconstruction technique (PCART), was used in conjunction with a priori information of the airglow emission profile to constrain the height of the imaged region, thereby reducing the indeterminacy of the inverse problem. Synthetic projection data were acquired from the imaging objects and the forward problem to validate the tomographic method and to demonstrate the ability of this technique to accurately reconstruct information using only two ground-based sites. Reconstructions of the OH airglow layer were created using data recorded by all-sky CCD cameras located at Bear Lake Observatory, Utah, and at Star Valley, Wyoming, with an optimal site separation of 100km. The ability to extend powerful 2D and 3D tomographic methods to two-station ground-based measurements offers obvious practical advantages for new measurement programs. The importance and applications of mesospheric tomographic reconstructions in airglow studies, as well as the need for future measurements and continued development of techniques of this type, are discussed.

© 2012 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(100.6950) Image processing : Tomographic image processing

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 15, 2011
Revised Manuscript: November 4, 2011
Manuscript Accepted: December 14, 2011
Published: February 29, 2012

Vern P. Hart, Timothy E. Doyle, Michael J. Taylor, Brent L. Carruth, Pierre-Dominique Pautet, and Yucheng Zhao, "Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements," Appl. Opt. 51, 963-974 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Y. Khomich, A. I. Semenov, and N. N. Shefov, “Introduction,” in Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, 2008), pp. 1–5.
  2. S. Chakrabarti, “Ground based spectroscopic studies of sunlit airglow and aurora,” J. Atmos. Sol. Terr. Phys. 60, 1403–1423 (1998). [CrossRef]
  3. D. M. Hunten, “Spectroscopic studies of the twilight airglow,” Space Sci. Rev. 6, 493–573 (1967). [CrossRef]
  4. W. E. Sharp, J. W. F. Lloyd, and S. M. Silverman, “Zenith skylight intensity and color during the total solar eclipse of 20 July 1963,” Appl. Opt. 5, 787–792 (1966). [CrossRef]
  5. X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007). [CrossRef]
  6. K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992). [CrossRef]
  7. G. Schmidtke, P. Seidl, and C. Wita, “Airglow-solar spectrometer instrument (20700 nm) aboard the San Marco D/L satellite,” Appl. Opt. 24, 3206–3213 (1985). [CrossRef]
  8. I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991). [CrossRef]
  9. I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991). [CrossRef]
  10. I. C. McDade and E. J. Llewellyn, “Satellite airglow limb tomography: methods for recovering structured emission rates in the mesospheric airglow layer,” Can. J. Phys. 71, 552–563 (1993). [CrossRef]
  11. E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).
  12. D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005). [CrossRef]
  13. D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009). [CrossRef]
  14. P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011). [CrossRef]
  15. L. L. Cogger and C. D. Anger, “The OI 5577 Å airglow experiment on the ISIS 2 satellite,” J. Atmos. Terr. Phys. 35, 2081–2084 (1973). [CrossRef]
  16. A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997). [CrossRef]
  17. C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987). [CrossRef]
  18. D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004). [CrossRef]
  19. Z. Wang and S. Chen, “Effective solution algorithm for tomographic inversion of volume emission rate from satellite-based limb measurement,” Chin. Geograph. Sci. 21, 554–562 (2011). [CrossRef]
  20. P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010). [CrossRef]
  21. M. J. Taylor, “A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere,” Adv. Space Res. 19, 667–676 (1997). [CrossRef]
  22. T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).
  23. T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998). [CrossRef]
  24. T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000). [CrossRef]
  25. D. S. Anderson, G. Swenson, F. Kamalabadi, and A. Liu, “Tomographic imaging of airglow from airborne spectroscopic measurments,” Appl. Opt. 47, 2510–2519 (2008). [CrossRef]
  26. J. Semeter and M. Mendillo, “A nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105–1116 (1997). [CrossRef]
  27. D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distributions of the hydroxyl airglow,” Phys. Scr. 37, 611 (1988). [CrossRef]
  28. M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995). [CrossRef]
  29. R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002). [CrossRef]
  30. E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008). [CrossRef]
  31. B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001). [CrossRef]
  32. Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005). [CrossRef]
  33. M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995). [CrossRef]
  34. F. J. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997). [CrossRef]
  35. D. Pautet and G. Moreels, “Ground-based satellite-type images of the upper-atmosphere emissive layer,” Appl. Opt. 41, 823–831 (2002). [CrossRef]
  36. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–68, 275–292.
  37. D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009). [CrossRef]
  38. J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004). [CrossRef]
  39. S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited