OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1122–1130

Semiellipsoid microlens fabrication method using UV proximity printing

Chien-Hsin Hung, Shih-Yu Hung, Ming-Ho Shen, and Hsiharng Yang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1122-1130 (2012)
http://dx.doi.org/10.1364/AO.51.001122


View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new semiellipsoid microlens fabrication method that controls the printing gap in the UV lithography process without thermal reflow. The UV proximity printing method can precisely control the curvature radius ratio of the semiellipsoid microlens in the fabrication process. The proposed fabrication method facilitates mass production to achieve a high-yield and high-coupling semiellipsoid microlens that is suitable to be used in commercial fiber transmission systems. A semiellipsoid microlens can be tipped on a single-mode fiber end to improve power coupling efficiency from laser diodes. The semiellipsoid microlens allows increasing the fiber spot size and numerical aperture. It is very important to control the geometric parameters in the assembly procedure to increase the optical coupling efficiency between the laser diode and single-mode fiber. Wide misalignment tolerance, low loss, and low manufacturing cost could be achieved by the proposed fabrication method. The theoretical model is first developed to predict the optical coupling efficiency for various microstructure geometries of semiellipsoid microlens and assembly parameters in this study. Then, the Taguchi method is applied to obtain the optimal geometric parameters setting. The results show that optical coupling efficiency could be significantly improved by using the optimal geometric parameters setting.

© 2012 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: August 26, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 29, 2011
Published: March 8, 2012

Citation
Chien-Hsin Hung, Shih-Yu Hung, Ming-Ho Shen, and Hsiharng Yang, "Semiellipsoid microlens fabrication method using UV proximity printing," Appl. Opt. 51, 1122-1130 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008). [CrossRef]
  2. H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004). [CrossRef]
  3. S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009). [CrossRef]
  4. L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991). [CrossRef]
  5. J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008). [CrossRef]
  6. C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010). [CrossRef]
  7. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007). [CrossRef]
  8. Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008). [CrossRef]
  9. R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.
  10. T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007). [CrossRef]
  11. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004). [CrossRef]
  12. K. Hoshino and I. Shimoyama, “An elastic thin-film micro-lens array with a pneumatic actuator,” Proceedings of MEMS 2001: The 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 321–324.
  13. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).
  14. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  16. J. Y. Hu, “Ellipsoidal microlens for laser diode to single-mode fiber coupling,” Ph.D. dissertation (National Taiwan University of Science and Technology, 2009).
  17. J. H. Sun, B. R. Hsueh, Y. C. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48, 1741–1757 (2009). [CrossRef]
  18. C. B. Lee, K. Hane, W. S. Kim, and S. K. Lee, “Design of retrodiffraction gratings for polarization-insensitive and polarization-sensitive characteristics by using the Taguchi method,” Appl. Opt. 47, 3246–3253 (2008). [CrossRef]
  19. K. M. Tsai, “Effect of injection molding process parameters on optical properties of lenses,” Appl. Opt. 49, 6149–6159 (2010). [CrossRef]
  20. G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, 1989).
  21. G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering (McGraw-Hill, 2000).
  22. J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004). [CrossRef]
  23. Y. F. William and M. C. Clyde, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (Addison-Wesley, 1998).
  24. M. He, X. Yuan, J. Bu, W. C. Cheong, and K. J. Moh, “Reflowed solgel spherical microlens for high-efficiency optical coupling between a laser diode and a single-mode fiber,” Appl. Opt. 44, 1469–1473 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited