OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 8 — Mar. 10, 2012
  • pp: 1131–1136

Optical properties of solution-processable semiconducting TiOx thin films for solar cell and other applications

Jiguang Li, Albert M. DeBerardinis, Lin Pu, and Mool C. Gupta  »View Author Affiliations


Applied Optics, Vol. 51, Issue 8, pp. 1131-1136 (2012)
http://dx.doi.org/10.1364/AO.51.001131


View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties of solution-processable semiconducting titanium suboxide (TiOx) thin films were investigated as a function of wavelength (350–800 nm) using ellipsometric and optical reflection technique. The variation of refractive index under different thermal annealing conditions (room temperature to 900 °C) was studied. The increase in refractive index with high-temperature thermal annealing process was observed, allowing the opportunity to obtain refractive index values from 1.77 to 2.57 at a wavelength of 600 nm. The x-ray diffraction and atomic force microscopy studies indicate that the index variation is due to the TiOx phase, density, and morphology changes under thermal annealing. The TiOx thin films have applications in organic and inorganic solar cells as well as other optical and photonic devices. We show that TiOx thin films can be used as an effective antireflection layer for Si solar cells.

© 2012 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.0310) Thin films : Thin films
(310.1210) Thin films : Antireflection coatings
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

History
Original Manuscript: August 29, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 10, 2012
Published: March 7, 2012

Citation
Jiguang Li, Albert M. DeBerardinis, Lin Pu, and Mool C. Gupta, "Optical properties of solution-processable semiconducting TiOx thin films for solar cell and other applications," Appl. Opt. 51, 1131-1136 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-8-1131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48, 1727–1732 (2009). [CrossRef]
  2. N. Nobuhiro, S. Mitsunori, M. Mitsunobu, B. Nobuyoshi, and S. Naruhito, “TiO2-SiO2 based glasses for infrared hollow waveguides,” Appl. Opt. 30, 1074–1079 (1991). [CrossRef]
  3. M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003). [CrossRef]
  4. B. O’Reagen and M. Gräzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991). [CrossRef]
  5. S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010). [CrossRef]
  6. B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005). [CrossRef]
  7. W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).
  8. M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998). [CrossRef]
  9. N. Ozer, H. Demiryont, and J. H. Simmons, “Optical properties of sol-gel spin-coated TiO2 films and comparison of the properties with ion-beam-sputtered films,” Appl. Opt. 30, 3661–3666 (1991). [CrossRef]
  10. P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998). [CrossRef]
  11. P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009). [CrossRef]
  12. Y. Yamada, H. Uyama, S. Watanabe, and H. Nozoye, “Deposition at low substrate temperatures of high-quality TiO2 films by radical beam-assisted evaporation,” Appl. Opt. 38, 6638–6641 (1999). [CrossRef]
  13. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002). [CrossRef]
  14. P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004). [CrossRef]
  15. G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000). [CrossRef]
  16. N. Albertinetti and H. T. Minden, “Granularity in ion-beam-sputtered TiO2 films,” Appl. Opt. 35, 5620–5625 (1996). [CrossRef]
  17. S. Chao, W. Wang, M. Hsu, and L. Wang, “Characteristics of ion-beam-sputtered high-refractive-index TiO2-SiO2 mixed films,” J. Opt. Soc. Am. A 16, 1477–1483 (1999). [CrossRef]
  18. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007). [CrossRef]
  19. S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009). [CrossRef]
  20. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006). [CrossRef]
  21. J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011). [CrossRef]
  22. D. Mardare and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B 68, 42–47 (1999). [CrossRef]
  23. M. M. Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Determination of optical constants of sol-gel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998). [CrossRef]
  24. V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994). [CrossRef]
  25. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986). [CrossRef]
  26. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000). [CrossRef]
  27. M. W. Ribarsky, “Titanium dioxide (TiO2) (rutile),” in Handbook of Optical Constants, E. Palik, ed. (Academic, 1985), Vol. 1, pp. 795–804.
  28. G. Hass, “Preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum 2, 331–345(1952). [CrossRef]
  29. V. V. Iyengar, J. Li, and M. C. Gupta, “Solution processable TiOx thin films as anti-reflection and passivation layer for Si solar cells,” IEEE J. Photovoltaics (submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited