OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 9 — Mar. 20, 2012
  • pp: 1387–1395

Quantitative phase microscopy using dual-plane in-line digital holography

Bhargab Das, Chandra S. Yelleswarapu, and D. V. G. L. N. Rao  »View Author Affiliations

Applied Optics, Vol. 51, Issue 9, pp. 1387-1395 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present detailed theoretical evaluation and thorough experimental investigation of quantitative phase imaging using our previously demonstrated dual-plane in-line digital holographic microscopy technique [Opt. Lett. 35, 3426 (2010)]. This evaluation is based on the recording of two interferograms at slightly different planes and numerically reconstructing the object information. The zero-order diffracted wave is eliminated by using the method of subtraction of average intensity of the entire hologram, and the twin-image diffracted wave is removed by Fourier domain processing of the two recorded holograms. Experiments are performed using controlled amplitude and phase objects and human muscle cells to demonstrate the potential of this technique.

© 2012 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(100.3010) Image processing : Image reconstruction techniques
(110.0180) Imaging systems : Microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(090.1995) Holography : Digital holography
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:

Original Manuscript: September 20, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 10, 2011
Published: March 16, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Bhargab Das, Chandra S. Yelleswarapu, and D. V. G. L. N. Rao, "Quantitative phase microscopy using dual-plane in-line digital holography," Appl. Opt. 51, 1387-1395 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  2. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001). [CrossRef]
  3. C. S. Yelleswarapu, S.-R. Kothapalli, F. J. Aranda, D. V. G. L. N. Rao, Y. R. Vaillancourt, and B. R. Kimball, “Phase contrast imaging using photothermally induced phase transitions in liquid crystals,” Appl. Phys. Lett. 89, 211116 (2006). [CrossRef]
  4. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Phase retrieval microscopy for quantitative phase-contrast imaging,” Optik 115, 94–96 (2004). [CrossRef]
  5. S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006). [CrossRef]
  6. N. Lue, W. Choi, G. Propescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007). [CrossRef]
  7. S. V. King, A. Libertun, R. Piestun, and C. J. Cogswell, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008). [CrossRef]
  8. A. Anand and B. Javidi, “Three-dimensional microscopy with single-beam wavefront sensing and reconstruction from speckle fields,” Opt. Lett. 35, 766–768 (2010). [CrossRef]
  9. L. Camacho, V. Mico, Z. Zalevsky, and J. Garcia, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6764 (2010). [CrossRef]
  10. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef]
  11. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010). [CrossRef]
  12. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006). [CrossRef]
  13. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  14. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17, 12031–12038 (2009). [CrossRef]
  15. M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express 1, 414–424 (2010). [CrossRef]
  16. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  17. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444–2452 (2005). [CrossRef]
  18. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  19. C. P. Brophy, “Effect of intensity error correlation on the computed phase of the phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537–541 (1990). [CrossRef]
  20. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wavefront measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef]
  21. C. S. Gao, L. Zhang, H. T. Wang, J. Liao, and Y. Y. Zhu, “Phase-shifting error and its elimination in phase-shifting digital holography,” Opt. Lett. 27, 1687–1689 (2002). [CrossRef]
  22. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006). [CrossRef]
  23. J.-P. Liu and T.-C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009). [CrossRef]
  24. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef]
  25. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009). [CrossRef]
  26. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49, 2872–2878 (2010). [CrossRef]
  27. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004). [CrossRef]
  28. B. Das and C. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett. 35, 3426–3428 (2010). [CrossRef]
  29. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008). [CrossRef]
  30. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef]
  31. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2004).
  32. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010). [CrossRef]
  33. F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res. 82, 379–384(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited