OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A147–A160

Digital in-line holography with a rectangular complex coherence factor

Clément Remacha, Sébastien Coëtmellec, Marc Brunel, and Denis Lebrun  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A147-A160 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose in this paper the study of a particular spatially partially coherent source applied to digital in-line holography of dense particle flow. A source with a rectangular complex coherence factor is implemented. The effects of such a source on the intensity distribution of the diffraction pattern are described. In particular, we show that this type of source allows us to eliminate the diffraction pattern along one axis while all the information about the dimension of the particle is kept along the other perpendicular axis. So particle images can be well reconstructed along one direction and the speckle can be largely limited.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(090.0090) Holography : Holography
(100.0100) Image processing : Image processing

Original Manuscript: July 17, 2012
Manuscript Accepted: August 9, 2012
Published: November 13, 2012

Clément Remacha, Sébastien Coëtmellec, Marc Brunel, and Denis Lebrun, "Digital in-line holography with a rectangular complex coherence factor," Appl. Opt. 52, A147-A160 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lee, B. Miller, and A. Sallam, “Demonstration of digital holographic diagnostics for breakup of liquid jets using a commercial-grade CCD sensor,” Atomization Sprays 19, 445–456 (2009). [CrossRef]
  2. N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coëtmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard–von Karman vortex flow,” Meas. Sci. Technol. 19, 074001 (2008). [CrossRef]
  3. W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express 17, 20343–20348 (2009). [CrossRef]
  4. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010). [CrossRef]
  5. H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993). [CrossRef]
  6. F. Nicolas, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography with sub-picosecond laser beam,” Opt. Commun. 268, 27–33 (2006). [CrossRef]
  7. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007). [CrossRef]
  8. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  9. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004). [CrossRef]
  10. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010). [CrossRef]
  11. S. Coëtmellec, C. Remacha, M. Brunel, and D. Lebrun, “Digital in-line holography with a spatially partially coherent beam,” J. Eur. Opt. Soc. Rapid Pub. 6, 11060 (2011). [CrossRef]
  12. C. Remacha, S. Coëtmellec, D. Lebrun, J.-M. Dorey, and F. David, “Inhomogeous dense flow: impact of the spatial coherence on digital holography,” presented at the International Symposium on Multiphase Flow and Transport Phenomena, Agadir, Morocco, 22–25 April 2012.
  13. J. W. Goodman, Statistical Optics (Wiley, 2000).
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  15. M. Fatih Erden, H. M. Ozaktas, and D. Mendlovic, “Propagation of mutual intensity expressed in terms of the fractional Fourier transform,” J. Opt. Soc. Am. A 13, 1068–1071 (1996). [CrossRef]
  16. M. A. Alonso, “Diffraction of paraxial partially coherent fields by planar obstacles in the Wigner representation,” J. Opt. Soc. Am. A 26, 1588–1597 (2009). [CrossRef]
  17. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef]
  18. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  19. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz–Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  21. J. Wen and M. Breazeale, “A diffraction beam field expressed as of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [CrossRef]
  22. A. E. Siegman, Lasers (University Science, 1986).
  23. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1970).
  24. M. Lurie, “Fourier-transform holograms with partially coherent light: holographic measurement of spatial coherence,” J. Opt. Soc. Am. 58, 614–619 (1968). [CrossRef]
  25. C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng. 33, 409–421 (2000). [CrossRef]
  26. D. Mas, J. Pérez, C. Hernandez, C. Vazquez, J. J. Miret, and C. Illueca, “Fast numerical calculation of Fresnel patterns in convergent systems,” Opt. Commun. 227, 245–258 (2003). [CrossRef]
  27. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  28. S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional order Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537–1546 (2002). [CrossRef]
  29. S. Coëtmellec, N. Verrier, D. Lebrun, and M. Brunel, “General formulation of digital in-line holography from correlation with a chirplet function,” J. Eur. Opt. Soc. Rapid Pub. 5, 10027 (2010). [CrossRef]
  30. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited