OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A210–A215

Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography [Invited]

Peng Xia, Yuki Shimozato, Tatsuki Tahara, Takashi Kakue, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A210-A215 (2013)
http://dx.doi.org/10.1364/AO.52.00A210


View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography. The proposed algorithm applies three kinds of interpolations and generates three different kinds of object waves. A Fourier transform is applied to each object wave, and the spatial-frequency domain is divided into 3×3 segments for each Fourier-transformed object wave. After that the segment in which interpolation error is the least among the segments having the same address of the segment in the spatial-frequency domain is extracted. The extracted segments are combined to generate an information-enhanced spatial-frequency spectrum of the object wave, and after that the formed spatial-frequency spectrum is inversely Fourier transformed. Then the high-frequency information of the reconstructed image is recovered. The effectiveness of the proposed algorithm was verified by a numerical simulation and an experiment.

© 2012 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1995) Holography : Digital holography

History
Original Manuscript: August 14, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 16, 2012
Published: November 27, 2012

Citation
Peng Xia, Yuki Shimozato, Tatsuki Tahara, Takashi Kakue, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba, "Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography [Invited]," Appl. Opt. 52, A210-A215 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  2. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  3. T.-C. Poon, ed., Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
  4. P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Improvement of color reproduction in color digital holography by using spectral estimation technique,” Appl. Opt. 50, H177–H182 (2011). [CrossRef]
  5. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995). [CrossRef]
  6. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  7. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257–1259 (2003). [CrossRef]
  8. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef]
  9. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006). [CrossRef]
  10. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of microorganisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163–168 (2007). [CrossRef]
  11. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736–741 (2008). [CrossRef]
  12. S. Murata, S. Hayashida, and Y. Tanaka, “Simultaneous measurement of particle depth and size using digital holography,” in Proceedings of the 9th International Symposium on Flow Visualization (CD) (OptImage, 2000), 371.1-6.
  13. D. Lebrun, A. M. Benkouider, S. Coëtmellec, and M. Malek, “Particle field digital holographic reconstruction in arbitrary tilted planes,” Opt. Express 11, 224–229 (2003). [CrossRef]
  14. T. Yamaguchi, S. Murata, and T. Morihara, “Three-dimensional flow measurement by digital holographic particle image velocimetry with spatio-temporal derivative method,” JSME Int. J. 49, 1133–1140 (2006). [CrossRef]
  15. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  16. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift invariant three-dimensional object recognition by means of digital holography,” Appl. Opt. 40, 3877–3886 (2001). [CrossRef]
  17. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). [CrossRef]
  18. T. Hansel, J. Müller, C. Falldorf, C. V. Kopylow, W. Jüptner, R. Grunwald, G. Steinmeyer, and U. Griebner, “Ultrashort-pulse dual-wavelength source for digital holographic two-wavelength contouring,” Appl. Phys. B 89, 513–516 (2007). [CrossRef]
  19. T. Hansel, G. Steinmeyer, R. Grunwald, C. Falldorf, J. Bonitz, C. Kaufmann, V. Kebbel, and U. Griebner, “Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms,” Opt. Express 17, 2686–2695 (2009). [CrossRef]
  20. F. Zhang, J. Valera, I. Yamaguchi, M. Yokota, and G. Mills, “Vibration analysis by phase shifting digital holography,” Opt. Rev. 11, 297–299 (2004). [CrossRef]
  21. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  22. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187–188.
  23. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357–358.
  24. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004). [CrossRef]
  25. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  26. S. Yoneyama, H. Kikuta, and K. Moriwaki, “Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,” Exp. Mech. 45, 451–456 (2005). [CrossRef]
  27. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006). [CrossRef]
  28. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189(2008). [CrossRef]
  29. S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48, 09LB01 (2009). [CrossRef]
  30. L. M. León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express 17, 12900–12909 (2009). [CrossRef]
  31. T. Kakue, T. Tahara, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holography using two phase shifts,” Appl. Opt. 48, H244–H250 (2009). [CrossRef]
  32. T. Kiire, T. Yatagai, S. Nakadate, and M. Shibuya, “Quadrature phase-shifting interferometer with a polarization imaging camera,” Opt. Rev. 17, 210–213 (2010). [CrossRef]
  33. T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18, 18975–18980 (2010). [CrossRef]
  34. T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18, 9555–9560 (2010). [CrossRef]
  35. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1, 610–616 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited