OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A216–A222

Three-dimensional subpixel estimation in holographic position measurement of an optically trapped nanoparticle

Akira Sato, Quang Duc Pham, Satoshi Hasegawa, and Yoshio Hayasaki  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A216-A222 (2013)
http://dx.doi.org/10.1364/AO.52.00A216


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose three-dimensional (3D) subpixel estimation in the position measurement of a nanoparticle held in optical tweezers in water by using an in-line, low-coherence digital holographic microscope. The 3D subpixel estimation was performed with the addition of axial subpixel estimation to the lateral subpixel estimation introduced in our previous work [Appl. Opt. 50, H183 (2011)]. The axial subpixel estimation allowed the step length in the diffraction calculation of a hologram to be increased to 20nm while keeping the axial resolution of 3nm. This drastically decreased the computation time of the diffraction calculation to less than 10% of the two-dimensional subpixel estimation.

© 2012 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(050.1970) Diffraction and gratings : Diffractive optics
(090.1995) Holography : Digital holography
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(100.4999) Image processing : Pattern recognition, target tracking

History
Original Manuscript: August 7, 2012
Revised Manuscript: October 7, 2012
Manuscript Accepted: October 7, 2012
Published: November 27, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Akira Sato, Quang Duc Pham, Satoshi Hasegawa, and Yoshio Hayasaki, "Three-dimensional subpixel estimation in holographic position measurement of an optically trapped nanoparticle," Appl. Opt. 52, A216-A222 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef]
  3. I. Tinoco, D. Collin, and P. T. X. Li, “Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics,” Q. Rev. Biophys. 38, 291–301 (2005). [CrossRef]
  4. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Meth. 5, 491–505 (2008). [CrossRef]
  5. M. Ichikawa, Y. Matsuzawa, Y. Koyama, and K. Yoshikawa, “Molecular fabrication: aligning DNA molecules as building blocks,” Langmuir 19, 5444–5447 (2003). [CrossRef]
  6. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of 18 kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993). [CrossRef]
  7. W. J. Greenleaf and S. M. Block, “Single-molecule, motion-based DNA sequencing using RNA polymerase,” Science 313, 801 (2006). [CrossRef]
  8. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003). [CrossRef]
  9. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004). [CrossRef]
  10. M. Miyazaki and Y. Hayasaki, “Motion control of low-index microspheres in liquid based on optical repulsive force of a focused beam array,” Opt. Lett. 34, 821–823 (2009). [CrossRef]
  11. S. Nakanishi, S. Shoji, S. Kawata, and H.-B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91, 063112 (2007). [CrossRef]
  12. S. I. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009). [CrossRef]
  13. E. R. Dufresne, and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instrum. 69, 1974–1977 (1998). [CrossRef]
  14. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999). [CrossRef]
  15. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  16. P. Jordan, H. Clare, L. Flendrig, J. Leach, J. Cooper, and M. Padgett, “Permanent 3D microstructures in a polymeric host created using holographic optical tweezers,” J. Mod. Opt. 51, 627–632 (2004). [CrossRef]
  17. Y. Roichman, and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439 (2005). [CrossRef]
  18. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). [CrossRef]
  19. F. Gittes, and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998). [CrossRef]
  20. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999). [CrossRef]
  21. J. S. Meiners and S. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999). [CrossRef]
  22. J. H. G. Huisstede, K. O. van der Werf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express 13, 1113–1123 (2005). [CrossRef]
  23. S. F. Tolic-Norrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006). [CrossRef]
  24. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010). [CrossRef]
  25. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008). [CrossRef]
  26. O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008). [CrossRef]
  27. S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). [CrossRef]
  28. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18, 11785–11790 (2010). [CrossRef]
  29. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19, 16410–16417 (2011). [CrossRef]
  30. T. Higuchi, Q. D. Pham, S. Hasegawa, and Y. Hayasaki, “Three-dimensional positioning of optically trapped nanoparticles,” Appl. Opt. 50, H183–H188 (2011). [CrossRef]
  31. L. Onural and P. D. Scott, “Digital recording of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  32. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  33. B. Skarman, K. Wozniac, and J. Becker, “Simultaneous 3D-PIV and temperature measurement using a new CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996). [CrossRef]
  34. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  35. L. Yu and L. Cai, “Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram,” J. Opt. Soc. Am. A 18, 1033–1045 (2001). [CrossRef]
  36. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396–400 (2004). [CrossRef]
  37. Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focus plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008). [CrossRef]
  38. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424–2430 (2004). [CrossRef]
  39. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowski, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006). [CrossRef]
  40. E. Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19, 6684–6698 (2011). [CrossRef]
  41. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006). [CrossRef]
  42. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef]
  43. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489–4496 (2002). [CrossRef]
  44. S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45, 953–959 (2006). [CrossRef]
  45. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), Chap. 3.
  46. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chap. 4.
  47. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.10.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited