OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A319–A325

General temperature field measurement by digital holography

Roman Doleček, Pavel Psota, Vít Lédl, Tomáš Vít, Jan Václavík, and Václav Kopecký  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A319-A325 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a digital holographic method for measurement of periodic asymmetric temperature fields. The method is based on a modified Twyman–Green setup having double sensitivity. For measurement only one precisely synchronized and triggered digital camera is used. The periodicity and self-similarity of each cycle of the measured phenomenon combined with the precisely synchronized camera capture allow one to obtain data later used for three-dimensional (3D) measurement. The reconstruction of 3D temperature field is based on tomographic approach.

© 2012 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(090.1995) Holography : Digital holography

Original Manuscript: August 15, 2012
Revised Manuscript: October 13, 2012
Manuscript Accepted: October 29, 2012
Published: November 30, 2012

Roman Doleček, Pavel Psota, Vít Lédl, Tomáš Vít, Jan Václavík, and Václav Kopecký, "General temperature field measurement by digital holography," Appl. Opt. 52, A319-A325 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000). [CrossRef]
  2. C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994). [CrossRef]
  3. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993). [CrossRef]
  4. M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981). [CrossRef]
  5. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981). [CrossRef]
  6. D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963). [CrossRef]
  7. C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994). [CrossRef]
  8. P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003). [CrossRef]
  9. A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000). [CrossRef]
  10. N. A. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).
  11. D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt. 11, 2613–2624 (1972). [CrossRef]
  12. C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994). [CrossRef]
  13. M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings,” Appl. Opt. 41, 654–657 (2002). [CrossRef]
  14. S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004). [CrossRef]
  15. A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978). [CrossRef]
  16. D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983). [CrossRef]
  17. A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983). [CrossRef]
  18. E. F. Spina and C. B. McGinley, “Constant-temperature anemometry in hypersonic flow: critical issues and sample results,” Exp. Fluids 17, 365–374 (1994). [CrossRef]
  19. V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012). [CrossRef]
  20. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  21. M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011). [CrossRef]
  22. D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983). [CrossRef]
  23. S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012). [CrossRef]
  24. M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001). [CrossRef]
  25. C. M. Vest, “Interferometry of strongly refracting axisymmetric phase objects,” Appl. Opt. 14, 1601–1606 (1975). [CrossRef]
  26. D. Wang and T. Zhuang, “The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography,” Opt. Lasers Eng. 36, 289–297 (2001). [CrossRef]
  27. A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001). [CrossRef]
  28. M. Antovs, “New three-dimensional configuration of multidirectional phase tomograph,” Proc. SPIE 6609, 66090R (2007).
  29. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305–310 (2000). [CrossRef]
  30. I. H. Lira and C. M. Vest, “Refraction correction in holographic interferometry and tomography of transparent objects,” Appl. Opt. 26, 3919–3928 (1987). [CrossRef]
  31. H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992). [CrossRef]
  32. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005). [CrossRef]
  33. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).
  34. J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008). [CrossRef]
  35. M. Gawlowski, K. E. Kelly, L. A. Marcotte, and A. Schönbucher, “Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry,” Appl. Opt. 48, 4625–4636 (2009). [CrossRef]
  36. D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007). [CrossRef]
  37. W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011). [CrossRef]
  38. A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005). [CrossRef]
  39. R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).
  40. A. Glezer and M. Amitay, “Synthetic jets,” Annu. Rev. Fluid Mech. 34, 503–529 (2002). [CrossRef]
  41. B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids 34, 467–472 (2003).
  42. Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003). [CrossRef]
  43. R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).
  44. R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988). [CrossRef]
  45. S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).
  46. G. Beylkin, “The inversion problem and applications of the generalized Radon transform,” Commun. Pure Appl. Math. 37, 579–599 (1984). [CrossRef]
  47. G. Beylkin, “Discrete radon transform,” IEEE Trans. Acoust. Speech and Signal Process. 35, 162–172 (1987). [CrossRef]
  48. T. M. Venema and J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express 16, 6985–6998 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited