OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A326–A335

Coherence requirement in digital holography

Daniel Claus, Daciana Iliescu, and John M. Rodenburg  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A326-A335 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the coherence requirement for different holographic setups (Fresnel hologram, Fourier hologram, and image-plane hologram) is compared. This analysis is based on the investigation of the recorded interference pattern from the superposition of reference wave and object wave in in-line and off-axis mode. The outcome of this investigation can support the choice of light source needed for certain digital holographic setups, as well as the selection of the best applicable setup to take advantage of new short coherence light sources. Moreover, as a byproduct of this investigation, the minimum required recording distance (focal length) to enable Nyquist sampling of the recorded hologram is obtained.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6140) Coherence and statistical optics : Speckle
(110.1650) Imaging systems : Coherence imaging
(110.4980) Imaging systems : Partial coherence in imaging
(090.1995) Holography : Digital holography
(100.3175) Image processing : Interferometric imaging

Original Manuscript: August 13, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: October 24, 2012
Published: December 5, 2012

Daniel Claus, Daciana Iliescu, and John M. Rodenburg, "Coherence requirement in digital holography," Appl. Opt. 52, A326-A335 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  2. S. Stürwald, B. Kemper, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Application of light emitting diodes in digital holographic microscopy,” Proc. SPIE 6995, 699507 (2008). [CrossRef]
  3. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011). [CrossRef]
  4. T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. Sci. Eng. 8, 8–13 (2006). [CrossRef]
  5. C. Yuanl, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011). [CrossRef]
  6. J. Kühn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). [CrossRef]
  7. M. Bertoletti, F. Gori, and G. Guattari, “Coherence requirement in holography,” J. Opt. Soc. Am. 57, 1526–1529 (1967). [CrossRef]
  8. S. Mallick and M. L. Robin, “Fourier transform holography using a quasimonochromatic incoherent source,” Appl. Opt. 10, 580–596 (1971). [CrossRef]
  9. F. Dubois, M.-L. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004). [CrossRef]
  10. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19, 24005–24022 (2011). [CrossRef]
  11. P.-C. Sun and E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994). [CrossRef]
  12. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005). [CrossRef]
  13. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express 20, 3977–3984 (2012). [CrossRef]
  14. N. Demoli, J. Meštrović, and I. Sović, “Subtraction digital holography,” Appl. Opt. 42, 798–804 (2003). [CrossRef]
  15. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  16. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  17. G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Laser Eng. 43, 1039–1055 (2005). [CrossRef]
  18. J. Watson, “Submersible digital holographic cameras and their application to marine science,” Opt. Eng. 50, 091313 (2011). [CrossRef]
  19. E. Zeidler, Teubner-Taschenbuch der Mathematik (B. G. Teubner,1996).
  20. P. Hariharan, Optical Holography (Cambridge University, 1984).
  21. J. W. Goodman, Introduction to Fourier Optics2nd ed. (McGraw-Hill, 1996).
  22. T. Goulette, D. H. Charles, and M. W. Davidson, “Infinity optical systems,” Nikon MicroscopyU, http://www.microscopyu.com/articles/optics/cfintro.html.
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 351.
  24. D. Claus, J. Watson, and J. M. Rodenburg, “Analysis and interpretation of the Seidel aberration coefficients in digital holography,” Appl. Opt. 50, H220–H229 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited