OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A410–A422

Optical parameters and space–bandwidth product optimization in digital holographic microscopy

Daniel Claus and Daciana Iliescu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A410-A422 (2013)
http://dx.doi.org/10.1364/AO.52.00A410


View Full Text Article

Enhanced HTML    Acrobat PDF (2358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper considers some of the most important optical parameters that characterize a digital holographic microscope (DHM) and presents their mathematical derivation based on geometrical and diffraction-based models. It supports and justifies the use of the out-of-focus recording of holograms by showing that the field of view can be increased when recording the hologram in front of the in-focus image plane. In this manner a better match between the space–bandwidth product (SBP) of the microscope objective and that of the reconstructed hologram can be obtained. Hence, DHM offers a more cost-efficient way to increase the recorded SBP compared to the application of a high-quality microscope objective (large numerical aperture and low magnification) used in conventional microscopy. Furthermore, an expression for the imaging distance (distance between hologram and image plane), while maintaining the optical resolution and sufficient sampling, is obtained. This expression takes into account all kinds of reference-wave curvature and can easily be transferred to lensless digital holography. In this context it could be demonstrated that an object wave matched reference wave offers a significantly smaller imaging distance and hence the largest recoverable SBP. In addition, a new, to our knowledge, approach, based on the influence of defocus on the modulation transfer function, is used to derive the depth of field (DOF) for a circular aperture (lens-based system) and a rectangular aperture (lensless system), respectively. This investigation leads to the finding that a rectangular aperture offers an increased resolution combined with an increased DOF, when compared to a circular aperture of the same size.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.0180) Imaging systems : Microscopy
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography

History
Original Manuscript: August 14, 2012
Revised Manuscript: November 5, 2012
Manuscript Accepted: November 5, 2012
Published: December 13, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Daniel Claus and Daciana Iliescu, "Optical parameters and space–bandwidth product optimization in digital holographic microscopy," Appl. Opt. 52, A410-A422 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kuehn, F. Charriére, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  2. S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Ozkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392–1397 (2001). [CrossRef]
  3. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef]
  4. M. A. Schulze, M. A. Hunt, E. Voelkl, J. D. Hickson, W. R. Usry, R. G. Smith, R. Bryant, and C. J. Thomas, “Semiconductor wafer defect detection using digital holography,” in Process and Materials Characterization and Diagnostics in IC Manufacturing (SPIE, 2003), pp. 183–193.
  5. S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” in SPIE Conference on Laser interferometry IX: Applications (SPIE, 1998), pp. 104–115.
  6. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456–3462 (2006). [CrossRef]
  7. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004). [CrossRef]
  8. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy (Springer, 2011).
  9. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriére, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006). [CrossRef]
  10. W. Osten, ed., Optical Inspection of Microsystems (Taylor & Francis, 2006).
  11. D. Carl, B. Kemper, G. Wernike, and G. v. Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004). [CrossRef]
  12. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  14. F. Gyímesi, Z. Füzessy, V. Borbély, B. Ráczkevi, G. Molnár, A. Czitrovszky, A. T. Nagy, G. Molnárka, A. Lotfi, A. Nagy, I. Harmati, and D. Szigethy, “Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification,” Appl. Opt. 48, 6026–6034 (2009). [CrossRef]
  15. P. Ferraro, L. Miccio, S. Grilli, R. Meucci, S. D. Nicola, and P. Buah-Bassuah, “Infrared digital holographic imaging,” SPIE Newsroom (2008), http://spie.org/x19497.xml.
  16. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011). [CrossRef]
  17. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  18. D. Claus, D. Iliescu, J. Watson, and J. Rodenburg, “Comparison of different digital holographic setup configurations,” in Digital Holography and Three-Dimensional Imaging (DH) 2012 (OSA, 2012), p. DM4C.3.
  19. D. Claus, J. Watson, and J. Rodenburg, “Analysis and interpretation of the Seidel aberration coefficients in digital holography,” Appl. Opt. 50, H220–H229 (2011). [CrossRef]
  20. D. Malacara, ed., Optical Shop Testing (Wiley-VCH, 2006).
  21. R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, 2000).
  22. D. Claus, A. M. Maiden, F. Zhang, F. G. R. Sweeney, M. J. Humphry, H. Schluesener, and J. M. Rodenburg, “Quantitative phase contrast optimised cancerous cell differentiation via ptychography,” Opt. Express 20, 9911–9918 (2012). [CrossRef]
  23. E. Hecht, Optics (Addison Wesley, 1998).
  24. O. Lummer and F. Reiche, eds., Die Lehre von der Bildentstehung im Mikroskop, von Ernst Abbe (F. Vieweg, 1910).
  25. H. Haferkorn, Optik, Physikalisch-technische Grunlagen und Anwendungen (Willey-VCH, 2003).
  26. M. Born and E. Wolf, eds., Principles of Optics (Cambridge University, 1999).
  27. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002). [CrossRef]
  28. N. Demoli, J. Mestrović, and I. Sović, “Subtraction digital holography,” Appl. Opt. 42, 798–804 (2003). [CrossRef]
  29. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360(1997). [CrossRef]
  30. P. Whittaker, R. A. Kloner, D. R. Boughner, and J. G. Pickering, “Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light,” Basic Res. Cardiol. 89, 397–410 (1994). [CrossRef]
  31. J. Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited