OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A423–A432

Overview of compressive sensing techniques applied in holography [Invited]

Yair Rivenson, Adrian Stern, and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A423-A432 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (795 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years compressive sensing (CS) has been successfully introduced in digital holography (DH). Depending on the ability to sparsely represent an object, the CS paradigm provides an accurate object reconstruction framework from a relatively small number of encoded signal samples. DH has proven to be an efficient and physically realizable sensing modality that can exploit the benefits of CS. In this paper, we provide an overview of the theoretical guidelines for application of CS in DH and demonstrate the benefits of compressive digital holographic sensing.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.2000) Image processing : Digital image processing
(100.3190) Image processing : Inverse problems
(110.1758) Imaging systems : Computational imaging
(090.1995) Holography : Digital holography

Original Manuscript: August 16, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 25, 2012
Published: December 13, 2012

Yair Rivenson, Adrian Stern, and Bahram Javidi, "Overview of compressive sensing techniques applied in holography [Invited]," Appl. Opt. 52, A423-A432 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kreis, Handbook of Holographic Interferometry, 1st ed.(Wiley-VCH, 2004), Chap. 3.
  2. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  3. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math 59, 1207–1223 (2006). [CrossRef]
  4. E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008). [CrossRef]
  5. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev. 51, 34–81 (2009). [CrossRef]
  6. E. J. Candès and Y. Plan, “A probabilistic and RIPless theory of compressed sensing,” IEEE Trans. Inf. Theory 57, 7235–7254 (2011). [CrossRef]
  7. A. Stern and B. Javidi, “Random projections image with extended space-bandwidth product,” J. Display Technology 3, 315–320 (2007). [CrossRef]
  8. A. Stern, Y. Rivenson, and B. Javidi, “Single exposure optically compressed imaging and visualization using random aperture,” in Seventh International Workshop on Information Optics (IOP, 2008), paper 12018.
  9. J. Romberg, “Compressive sensing by random convolution,” SIAM J. Imaging Sci. 2, 1098–1128 (2009). [CrossRef]
  10. Y. Rivenson, A. Stern, and B. Javidi, “Single exposure super-resolution compressive imaging by double phase encoding,” Opt. Express 18, 15094–15103 (2010). [CrossRef]
  11. R. Willett, R. Marcia, and J. Nichols, “Compressed sensing for practical optical imaging systems: a tutorial,” Opt. Eng. 50, 072601 (2011). [CrossRef]
  12. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008). [CrossRef]
  13. W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  14. F. Magalhães, F. Araújo, M. Correia, M. Abolbashari, and F. Farahi, “Active illumination single-pixel camera based on compressive sensing,” Appl. Opt. 50, 405–414 (2011). [CrossRef]
  15. V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging,” Opt. Lett. 37, 824–826 (2012). [CrossRef]
  16. S. Sotthivirat and J. A. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004). [CrossRef]
  17. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef]
  18. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive Holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef]
  19. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel Holography,” J. Display Technol. 6, 506–509 (2010). [CrossRef]
  20. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010). [CrossRef]
  21. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010). [CrossRef]
  22. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010). [CrossRef]
  23. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010). [CrossRef]
  24. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010). [CrossRef]
  25. M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011). [CrossRef]
  26. Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express 19, 6109–6118 (2011). [CrossRef]
  27. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011). [CrossRef]
  28. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, “Recovery of partially occluded objects by applying compressive Fresnel holography,” Opt. Lett. 37, 1757–1759 (2012). [CrossRef]
  29. R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37, 2013–2015 (2012). [CrossRef]
  30. Y. Liu, L. Tian, J. Lee, H. Huang, M. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359 (2012). [CrossRef]
  31. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992). [CrossRef]
  32. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4, 460–489 (2005). [CrossRef]
  33. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007). [CrossRef]
  34. “SPARCO: A toolbox for testing sparse reconstruction algorithms,” http://www.cs.ubc.ca/labs/scl/sparco .
  35. E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM J. Sci. Comput. 31, 890–912 (2009). [CrossRef]
  36. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Trans. Signal Process. 57, 2479–2493 (2009). [CrossRef]
  37. “Compressive sensing resources,” http://www.compressedsensing.com/ .
  38. “Compressive sensing: The big picture,” https://sites.google.com/site/igorcarron2/cs#reconstruction .
  39. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25, 72–82 (2008). [CrossRef]
  40. E. J. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007). [CrossRef]
  41. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999). [CrossRef]
  42. Y. Rivenson and A. Stern, “Conditions for practicing compressive Fresnel holography,” Opt. Lett. 36, 3365–3367 (2011). [CrossRef]
  43. A. Van der Lugt, “Optimum sampling of Fresnel transforms,” Appl. Opt. 29, 3352–3361 (1990). [CrossRef]
  44. A. Ashok and M. Neifeld, “Compressive imaging: hybrid measurement basis design,” J. Opt. Soc. Am. A 28, 1041–1050 (2011). [CrossRef]
  45. M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. McDowall, and M. Bolas, “Synthetic aperture confocal imaging,” ACM Trans. Graph. 23, 825–834 (2004). [CrossRef]
  46. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106–1108 (2006). [CrossRef]
  47. J. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms,” Appl. Opt. 45, 2975–2985 (2006). [CrossRef]
  48. Y. S. Hwang, S.-H. Hong, and B. Javidi, “Free view 3-d visualization of occluded objects by using computational synthetic aperture integral imaging,” J. Display Technology 3, 64–70 (2007). [CrossRef]
  49. N. Joshi, S. Avidan, W. Matusik, and D. J. Kriegman, “Synthetic aperture tracking: tracking through occlusions,” in IEEE 11th International Conference on Computer Vision (IEEE, 2007), pp. 1–8.
  50. S. M. Khan and M. Shah, “Tracking multiple occluding people by localizing on multiple scene planes,” IEEE Trans. Pattern. Anal. Mach. Intell. 31, 505–519 (2009). [CrossRef]
  51. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136(2009). [CrossRef]
  52. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005). [CrossRef]
  53. S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006). [CrossRef]
  54. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163–168 (2007). [CrossRef]
  55. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional imaging, identification and tracking of micro/nano biological organisms by holographic microscopy,” Proc. IEEE 97, 990–1010 (2009). [CrossRef]
  56. Y. Rivenson, A. Stern, and B. Javidi, “Improved three-dimensional resolution by single exposure in-line compressive holography,” Appl. Opt. 52, xxx–xxx (2013).
  57. S. Lim, D. Marks, and D. Brady, “Sampling and processing for compressive holography,” Appl. Opt. 50, H75–H86 (2011). [CrossRef]
  58. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45, 7667–7673 (2006). [CrossRef]
  59. A. Tippie and J. Fienup, “Weak-object image reconstructions with single-shot digital holography,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest(Optical Society of America, 2012), paper DM4C.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3448 KB)     
» Media 2: AVI (3448 KB)     
» Media 3: AVI (4137 KB)     
» Media 4: AVI (4137 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited