OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A56–A67

Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays

Igor Alexeenko, Jean-François Vandenrijt, Giancarlo Pedrini, Cédric Thizy, Birgit Vollheim, Wolfgang Osten, and Marc P. Georges  »View Author Affiliations


Applied Optics, Vol. 52, Issue 1, pp. A56-A67 (2013)
http://dx.doi.org/10.1364/AO.52.000A56


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe three different interferometric techniques (electronic speckle pattern interferometry, digital holographic interferometry, and digital shearography), using a long-wave infrared radiation produced by a CO 2 laser and recorded on a microbolometer array. Experimental results showing how these methods can be used for nondestructive testing are presented. Advantages and disadvantages of these approaches are discussed.

© 2013 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6165) Instrumentation, measurement, and metrology : Speckle interferometry, metrology

History
Original Manuscript: July 6, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: October 22, 2012

Citation
Igor Alexeenko, Jean-François Vandenrijt, Giancarlo Pedrini, Cédric Thizy, Birgit Vollheim, Wolfgang Osten, and Marc P. Georges, "Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays," Appl. Opt. 52, A56-A67 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-1-A56


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  2. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  3. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
  4. B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008). [CrossRef]
  5. J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969). [CrossRef]
  6. W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970). [CrossRef]
  7. S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484(1971). [CrossRef]
  8. R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6 μm and reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018–2019 (1976). [CrossRef]
  9. M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977). [CrossRef]
  10. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977). [CrossRef]
  11. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978). [CrossRef]
  12. J. Lewandowski, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984). [CrossRef]
  13. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).
  14. R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301(2000). [CrossRef]
  15. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  16. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984). [CrossRef]
  17. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003). [CrossRef]
  18. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008). [CrossRef]
  19. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008). [CrossRef]
  20. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 6616–6672 (2007). [CrossRef]
  21. J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010). [CrossRef]
  22. I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003). [CrossRef]
  23. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.
  24. I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010). [CrossRef]
  25. T. Maack, R. Kowarschik, and G. Notni, “Optimum lens aperture in phase-shifting speckle interferometric setups for maximum accuracy of phase measurement,” Appl. Opt. 36, 6217–6224 (1997). [CrossRef]
  26. J.-F. Vandenrijt, “Etude et développment de techniques de métrologie de déplacements en lumière cohérente en infrarouge thermique,” Ph.D. dissertation (Université de Liège, 2010) (in French).
  27. G. Pedrini and H. Tiziani, in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).
  28. M. Takeda, Hideki, and S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982). [CrossRef]
  29. W. Steinchen and L. Yang, in Digital Shearography (SPIE, 2003).
  30. M. Kalms and W. Osten, “Mobile shearography system for the inspection of aircraft and automotive components,” Opt. Eng. 42, 1188–1196 (2003). [CrossRef]
  31. S. Debrus, “Speckle shearing interferometer using a Savart plate,” Opt. Commun. 20, 257–267 (1977). [CrossRef]
  32. F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000). [CrossRef]
  33. M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited