OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 1 — Jan. 1, 2013
  • pp: A68–A80

Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources

Ahmed El Mallahi, Christophe Minetti, and Frank Dubois  »View Author Affiliations

Applied Optics, Vol. 52, Issue 1, pp. A68-A80 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigate the use of a digital holographic microscope working with partially coherent spatial illumination for an automated detection and classification of living organisms. A robust automatic method based on the computation of propagating matrices is proposed to detect the 3D position of organisms. We apply this procedure to the evaluation of drinking water resources by developing a classification process to identify parasitic protozoan Giardia lamblia cysts among two other similar organisms. By selecting textural features from the quantitative optical phase instead of morphological ones, a robust classifier is built to propose a new method for the unambiguous detection of Giardia lamblia cyst that present a critical contamination risk.

© 2013 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.0100) Image processing : Image processing
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing
(180.0180) Microscopy : Microscopy

Original Manuscript: July 26, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 24, 2012
Published: October 25, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Ahmed El Mallahi, Christophe Minetti, and Frank Dubois, "Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources," Appl. Opt. 52, A68-A80 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Zhang and I. Yamaguchi, “Three-dimentional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  3. F. Dubois, L. Johannes, and J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherence source,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  4. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  5. F. Dubois, C. Yourassowsky, O. Monnon, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006). [CrossRef]
  6. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamics evaluation during laser microsurgery,” Appl. Opt. 17, 12031–12038 (2009).
  7. X. Hu, M. Gross, C. Liu, D. C. Clark, D. T. Haynie, and M. K. Kim, “Measurement of the traction force of biological cells by digital holography,” Biomed. Opt. Express 3, 153–159 (2012). [CrossRef]
  8. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef]
  9. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef]
  10. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchon, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011). [CrossRef]
  11. P. Memmolo, A. Finizio, M. Paturzo, L. Miccia, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011). [CrossRef]
  12. B. Javidi, I. Moon, S. Yeom, and E. Carapezz, “Three-dimensional imaging and recognition of microorganisms using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005). [CrossRef]
  13. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. 24, 163–168 (2007). [CrossRef]
  14. I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13, 9612–9622 (2005). [CrossRef]
  15. B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events,” Opt. Express 14, 3806–3826 (2006). [CrossRef]
  16. A. Nelleri, J. Joseph, and K. Singh, “Recognition and classification of three-dimensional phase objects by digital Fresnel holography,” Appl. Opt. 45, 4046–4053 (2006). [CrossRef]
  17. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006). [CrossRef]
  18. M. Daneshpanah, B. Javidi, and E. A. Watsin, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010). [CrossRef]
  19. R. Liu, D. K. Dey, D. Boss, O. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. 28, 1204–1210 (2011). [CrossRef]
  20. I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20, 10295–10309 (2012). [CrossRef]
  21. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010). [CrossRef]
  22. P. Kolman and R. Chmelik, “Coherence-controlled holographic microscope,” Opt. Express 18, 21990–22003 (2010). [CrossRef]
  23. Z. Monemhagdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express 19, 24005–24022 (2011). [CrossRef]
  24. F. Dubois, M.-L. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004). [CrossRef]
  25. Guidelines for Drinking-Water Quality. Volume 1—Recommendations (World Health Organization, 2006).
  26. D. B. Huang and A. C. White, “An updated review on Cryptosporidium and Giardia,” Gastroenterol. Clin. North Am. 35, 291–314 (2006). [CrossRef]
  27. G. F. Craun, “Waterborne giardiasis,” Hum. Parasit. Dis. 3, 267–293 (1990).
  28. M. Bouzid, D. Steverding, and K. M. Tyler, “Detection and surveillance of waterborne protozoan parasites,” Curr. Opin. Biotechnol. 19, 302–306 (2008). [CrossRef]
  29. J. L. Clancy and P. R. Hunter, “Monitoring of Giardia and Cryptosporidium in water in the UK and US,” in The Pathogenic Enteric Protozoa: Giardia, Entamoeba, Cryptosporidium and Cyclospora, C. R. Sterling and R. D. Adam, eds. (Springer, 2004), pp. 129–139.
  30. B. M. Hsu, N. M. Wu, F. C. Shih, M. T. Wa, and C. M. Kung, “Using the flow cytometry to quantify the Giardia and Cryptosporidium oocysts in water samples,” Environ. Monit. Assess. 104, 155–162 (2005). [CrossRef]
  31. M. R. Rodgers, D. J. Flanigan, and W. Jakubowski, “Identification of algae which interfere with the detection of Giardia cysts and Cryptosporidium oocysts and a method for alleviating this interference,” Appl. Environ. Microbiol. 61, 3759–3763 (1995).
  32. H. G. Sheffield and B. Bjorvatn, “Ultrastructure of the cyst of Giardia lamblia,” Am. J. Trop. Med. Hyg. 26, 23–30(1997).
  33. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowsky, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flows analysis,” Appl. Opt. 45, 864–871 (2006). [CrossRef]
  34. C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305–5314 (2008). [CrossRef]
  35. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3, 847–855 (1986). [CrossRef]
  36. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  37. M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging 13, 146–165 (2004). [CrossRef]
  38. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006). [CrossRef]
  39. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19, 6684–6698(2011). [CrossRef]
  40. M. Antkowiak, N. Callens, C. Yourassowski, and F. Dubois, “Extended focusing imaging of a microparticle field with digital holographic microscope,” Opt. Express 33, 1626–1628 (2008).
  41. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).
  42. C. Cortes and V. Vapnik, “Support vector network,” Mach. Learn. 20, 273–297 (1995).
  43. F. van der Heijden, R. P. W. Duin, D. de Ridder, and D. M. L. Tax, Classification, Parameter Estimation and State Estimation (Wiley, 2004).
  44. A. Webb, Statistical Pattern Recognition (Wiley, 2002).
  45. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited