OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 11 — Apr. 10, 2013
  • pp: 2394–2415

Practical depolarization-ratio-based inversion procedure: lidar measurements of the Eyjafjallajökull ash cloud over the Netherlands

David Patrick Donovan and Arnoud Apituley  »View Author Affiliations


Applied Optics, Vol. 52, Issue 11, pp. 2394-2415 (2013)
http://dx.doi.org/10.1364/AO.52.002394


View Full Text Article

Enhanced HTML    Acrobat PDF (3717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a technique for estimating optical backscatter and extinction profiles using lidar, which exploits the difference between the observed linear volume depolarization ratio at 355 nm and the corresponding expected aerosol-only depolarization ratio. The technique is specific to situations where a single strongly depolarizing species is present and the associated linear particulate depolarization ratio may be presumed to be known to within a reasonable degree of accuracy (on the order of 10%). The basic principle of the technique is extended to deal with situations where a depolarizing fraction is mixed with nondepolarizing aerosol. In general, since the relative depolarization interchannel calibration is much more stable than the absolute system calibration, the depolarization-based technique is easier to implement than conventional techniques that require a profile-by-profile calibration or, equivalently, an identification of aerosol-free altitude intervals. This in particular allows for unattended data analysis and makes the technique well-suited to be part of a broader (volcanic ash) surveillance system. The technique is demonstrated by applying it to the analysis of aerosol layers resulting from the 2010 eruptions of the Eyjafjallajökull volcano in Iceland. The measurements were made at the Cabauw remote-sensing site in the central Netherlands. By comparing the results of the depolarization-based inversion with a more conventional manual inversion procedure as well as Raman lidar results, it is demonstrated that the technique can be successfully applied to the particular case of 355 nm depolarization lidar volcanic ash soundings, including cases in which the ash is mixed with nondepolarizing aerosol.

© 2013 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 3, 2013
Revised Manuscript: February 27, 2013
Manuscript Accepted: March 1, 2013
Published: April 10, 2013

Citation
David Patrick Donovan and Arnoud Apituley, "Practical depolarization-ratio-based inversion procedure: lidar measurements of the Eyjafjallajökull ash cloud over the Netherlands," Appl. Opt. 52, 2394-2415 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-11-2394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Gudmundsson, T. Thordarson, Á. Höskuldsson, G. Larsen, H. Björnsson, F. J. Prata, B. Oddsson, E. Magnússon, T. Högnadóttir, G. N. Petersen, C. L. Hayward, J. A. Stevenson, and I. Jónsdóttir, “Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland,” Sci. Rep. 2, 572 (2012). [CrossRef]
  2. G. Pappalardo, L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson, “Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET,” Atmos. Chem. Phys. Discuss. 12, 30203–30257 (2012). [CrossRef]
  3. A. Ansmann, M. Tesche, S. Grofl, V. Freudenthaler, P. Seifert, A. Hiebsch, J. Schmidt, U. Wandinger, I. Mattis, D. Müller, and M. Wiegner, “The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany,” Geophys. Res. Lett. 37, L13810 (2010). [CrossRef]
  4. H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke, “The Eyjafjallajökull eruption in April 2010—detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles,” Atmos. Chem. Phys. 10, 10085–10092 (2010). [CrossRef]
  5. A. Stohl, A. J. Prata, S. Eckhardt, L. Clarisse, A. Durant, S. Henne, N. I. Kristiansen, A. Minikin, U. Schumann, P. Seibert, K. Stebel, H. E. Thomas, T. Thorsteinsson, K. Tørseth, and B. Weinzierl, “Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption,” Atmos. Chem. Phys. 11, 4333–4351 (2011). [CrossRef]
  6. M. Wiegner, J. Gasteiger, S. Groß, F. Schnell, V. Freudenthaler, and R. Forkel, “Characterization of the Eyjafjallajökull ash-plume: potential of lidar remote sensing,” J. Phys. Chem. Earth 45–46, 79–86 (2012). [CrossRef]
  7. C. Bay Hasager, W. Birmili, G. Pappalardo, and F. Prata, eds., “Atmospheric implications of the volcanic eruptions of Eyjafjallajökull, Iceland 2010,” (Special issue), Atmos. Chem. Phys. (2010).
  8. B. Langmann, L. Alados Arboledas, A. Folch, and V. Matthias, eds., “Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April-May 2010,” (Special issue), Atmos. Environ. 48, 1–240 (2012). [CrossRef]
  9. Special collection: “The Eyjafjallajökull Volcanic Eruption in 2010,” J. Geophys. Res. (2011–2012).
  10. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined raman elastic-backscatter lidar,” Appl. Opt. 31, 7113 (1992). [CrossRef]
  11. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, Part I: instrumentation and theory,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef]
  12. J. E. M. Goldsmith, S. E. Bisson, H. B. Blair, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  13. T. Dinoevm, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, M. B. Parlange, and V. Simeonov, “High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar,” in EGU General Assembly Conference Abstracts, (European Geophysical Union, 2010), Vol. 12, p.13335.
  14. D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26, 2366–2378 (2009). [CrossRef]
  15. G. Tsaknakis, A. Papayannis, P. Kokkalis, V. Amiridis, H. D. Kambezidis, R. E. Mamouri, G. Georgoussis, and G. Avdikos, “Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over Athens, Greece,” Atmos. Meas. Tech. 4, 1261–1273 (2011). [CrossRef]
  16. A. Ansmann, M. Tesche, P. Seifert, S. Groß, V. Freudenthaler, A. Apituley, K. M. Wilson, I. Serikov, H. Linné, B. Heinold, A. Hiebsch, F. Schnell, J. Schmidt, I. Mattis, U. Wandinger, and M. Wiegner, “Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010,” J. Geophys. Res. 116, D00U02 (2011). [CrossRef]
  17. F. Marenco and R. J. Hogan, “Determining the contribution of volcanic ash and boundary layer aerosol in backscatter lidar returns: a three-component atmosphere approach,” J. Geophys. Res. 116, D00U06 (2011).
  18. A. Miffre, G. David, B. Thomas, and P. Rairoux, “Atmospheric non-spherical particles optical properties from UV-polarization lidar and scattering matrix,” Geophys. Res. Lett. 38, L16804 (2011). [CrossRef]
  19. N. Sugimoto, I. Uno, M. Nishikawa, A. Shimizu, I. Matsui, X. Dong, Y. Chen, and H. Quan, “Record heavy Asian dust in Beijing in 2002: observations and model analysis of recent events,” Geophys. Res. Lett. 30, 42 (2003). [CrossRef]
  20. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009). [CrossRef]
  21. A. Apituley, H. Russchenberg, H. van der Marel, R. Boers, H. ten Brink, G. de Leeuw, R. Uijlenhoet, B. Arbresser-Rastburg, and T. Röckmann, “Overview of research and networking with ground based remote sensing for atmospheric profiling at the cabauw experimental site for atmospheric research (CESAR)—the Netherlands,” in Proceedings IGARSS 2008 (IEEE, 2008), pp. 903–906.
  22. M. Wiegner, S. Groß, S. V. Freudenthaler, F. Schnell, and J. Gasteiger, “The May/June 2008 Saharan dust event over Munich: Intensive aerosol parameters from lidar measurements,” J. Geophys. Res. 116, D23213 (2011). [CrossRef]
  23. F. Marenco, B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Ricketts, “Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume,” J. Geophys. Res. 116, D00U05 (2011). [CrossRef]
  24. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus, Ser. B 61, 165–179 (2009). [CrossRef]
  25. S. Groß, M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner, “Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2,” Tellus, Ser. B 63, 706–724 (2011). [CrossRef]
  26. S. Groß, V. Freudenthaler, M. Wiegner, J. Gasteiger, A. Geiß, and F. Schnell, “Dual-wavelength linear depolarization ratio of volcanic aerosols: lidar measurements of the Eyjafjallajökull plume over Maisach, Germany,” Atmos. Environ. 48, 85–96 (2011).
  27. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).
  28. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34, 561–580 (1992). [CrossRef]
  29. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current Fortran implementation of the T-Matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  30. U. Schumann, B. Weinzierl, O. Reitebuch, H. Schlager, A. Minikin, C. Forster, R. Baumann, T. Sailer, K. Graf, H. Mannstein, C. Voigt, S. Rahm, R. Simmet, M. Scheibe, M. Lichtenstern, P. Stock, H. Rüba, D. Schäuble, A. Tafferner, M. Rautenhaus, T. Gerz, H. Ziereis, M. Krautstrunk, C. Mallaun, J.-F. Gayet, K. Lieke, K. Kandler, M. Ebert, S. Weinbruch, A. Stohl, J. Gasteiger, S. Groß, V. Freudenthaler, M. Wiegner, A. Ansmann, M. Tesche, H. Olafsson, and K. Sturm, “Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010,” Atmos. Chem. Phys. 11, 2245–2279(2011). [CrossRef]
  31. A. Petzold, M. Esselborn, B. Mayer, B. Weinzierl, A. Ansmann, D. Müller, D. Donovan, G. van Zadelhoff, M. Wiegner, J. Gasteiger, J. Accareta, and D. Lajas, “Inter-comparison of aerosol retrievals and observational requirements for multi-wavelength HSRL systems,” Final report, ESA/ESTEC contract No. 22169/NL/CT, Tech. Rep. ESA-ESTEC (European Space Agency, 2011).
  32. J. Gasteiger, S. Groß, V. Freudenthaler, and M. Wiegner, “Volcanic ash from iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011). [CrossRef]
  33. G. W. Petty and W. Huang, “The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions,” J. Atmos. Sci. 68, 1460–1473 (2011). [CrossRef]
  34. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef]
  35. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef]
  36. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of at- atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef]
  37. P. Chazette, A. Dabas, J. Sanak, M. Lardier, and P. Royer, “French airborne lidar measurements for Eyjafjallajökull ash plume survey,” Atmos. Chem. Phys. 12, 7059–7072 (2012). [CrossRef]
  38. P. N. Francis, M. C. Cooke, and R. W. Saunders, “Retrieval of physical properties of volcanic ash using Meteosat: a case study from the 2010 Eyjafjallajökull eruption,” J. Geophys. Res. 117, D00U09 (2012). [CrossRef]
  39. S. C. Millington, R. W. Saunders, P. N. Francis, and H. N. Webster, “Simulated volcanic ash imagery: a method to compare NAME ash concentration forecasts with SEVIRI imagery for the Eyjafjallajkull eruption in 2010,” J. Geophys. Res. 117, D00U17 (2012). [CrossRef]
  40. V. Kovalev and W. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Tools (Wiley-Interscience, 2004).
  41. M. Hervo, B. Quennehen, N. I. Kristiansen, J. Boulon, A. Stohl, P. Fréville, J.-M. Pichon, D. Picard, P. Labazuy, M. Gouhier, J.-C. Roger, A. Colomb, A. Schwarzenboeck, and K. Sellegri, “Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, lidar and airborne measurements in France,” Atmos. Chem. Phys. 12, 1721–1736 (2012). [CrossRef]
  42. A. Ansmann, P. Seifert, M. Tesche, and U. Wandinger, “Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes,” Atmos. Chem. Phys. 12, 9399–9415 (2012). [CrossRef]
  43. P. Chazette, M. Bocquet, P. Royer, V. Winiarek, J.-C. Raut, P. Labazuy, M. Gouhier, M. Lardier, and J.-P. Cariou, “Eyjafjallajökull ash concentrations derived from both lidar and modeling,” J. Geophys. Res. 117, D00U14 (2012). [CrossRef]
  44. A. Apituley, K. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of CAELI—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling, A. Apituley, H. Russchenberg, and W. Monna, eds., (ISTP committee, 2009), S06-O10.
  45. G. Pappalardo, U. Wandinger, L. Mona, A. Hiebsch, I. Mattis, A. Amodeo, A. Ansmann, P. Seifert, H. Linné, A. Apituley, L. Alados Arboledas, D. Balis, A. Chaikovsky, G. D’Amico, F. De Tomasi, V. Freudenthaler, E. Giannakaki, A. Giunta, I. Grigorov, M. Iarlori, F. Madonna, R.-E. Mamouri, L. Nasti, A. Papayannis, A. Pietruczuk, M. Pujadas, V. Rizi, F. Rocadenbosch, F. Russo, F. Schnell, N. Spinelli, X. Wang, and M. Wiegner, “Earlinet correlative measurements for calipso: first intercomparison results,” J. Geophys. Res. 115, D00H19 (2010). [CrossRef]
  46. J. Biele, G. Beyerle, and G. Baumgarten, “Polarization lidar: correction of instrumental effects,” Opt. Express 7, 427–435 (2000). [CrossRef]
  47. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001). [CrossRef]
  48. F. Marenco, B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Ricketts, “Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume,” J. Geophys. Res. 116, D00U05 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited