OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3203–3215

Optical properties of liquids for fluidic optics

Peter Liebetraut, Philipp Waibel, Phuong Ha Cu Nguyen, Patrick Reith, Bernd Aatz, and Hans Zappe  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3203-3215 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the dispersion characteristics of 18 liquids and one resin, which are widely used as media for liquid lenses in adaptive and tunable optics and for index matching in spectrochemical analysis. These are measured by using a refractometer operating at six different wavelengths. We provide a short description of the measurement setup and present a detailed uncertainty analysis of the measurement system to provide a measure of the reliability of the data. We conclude with a catalog of refractive indices and Sellmeier coefficients of the measured liquids and show the location of the analyzed materials in an Abbe diagram.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.5470) Materials : Polymers

ToC Category:

Original Manuscript: February 14, 2013
Manuscript Accepted: March 12, 2013
Published: May 7, 2013

Peter Liebetraut, Philipp Waibel, Phuong Ha Cu Nguyen, Patrick Reith, Bernd Aatz, and Hans Zappe, "Optical properties of liquids for fluidic optics," Appl. Opt. 52, 3203-3215 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006). [CrossRef]
  2. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007). [CrossRef]
  3. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011). [CrossRef]
  4. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.
  5. B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–135 (2005).
  6. M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012). [CrossRef]
  7. P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012). [CrossRef]
  8. D. R. Lide, ed., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008).
  9. M. J. Weber, Handbook of Optical Materials, The CRC Press Laser and Optical Science and Technology Series (CRC Press, 2003).
  10. R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002). [CrossRef]
  11. M. Boyer-Donzelot and J. Barriol, “Analysis of experimental data in the optical dispersion of organic liquids,” Bull. Soc. Chim. Fr. Pt. 1, 2972–2976 (1973).
  12. A. F. Forziati, “Refractive index as a function of wavelength for sixty API-NBS hydrocarbons,” J. Res. Natl. Bur. Stand. 44, 373–385 (1950). [CrossRef]
  13. E. Moreels, C. de Greef, and R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984). [CrossRef]
  14. S. K. Mitra, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57, 1798–1799 (1972). [CrossRef]
  15. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985). [CrossRef]
  16. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007). [CrossRef]
  17. R. T. Davis and R. W. Schiessler, “Optical dispersion of perdeuterobenzene and perdeuterocyclohexane,” J. Am. Chem. Soc. 75, 2763–2764 (1953). [CrossRef]
  18. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22, 3070–3072 (1983). [CrossRef]
  19. J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939). [CrossRef]
  20. J. P. Wibaut and S. L. Langedijk, “Physical constants of a number of alkanes and cycloalkanes. II. Additive and constitutional influences on molecular refraction, dispersion and parachor,” Recl. Trav. Chim. Pays-Bas Belg. 59, 1220–1251 (1940). [CrossRef]
  21. J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954). [CrossRef]
  22. A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950). [CrossRef]
  23. K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol,” J. Chem. Eng. Data 12, 489–493(1967). [CrossRef]
  24. K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data 13, 30–34 (1968). [CrossRef]
  25. J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998). [CrossRef]
  26. J. Räty and K.-E. Peiponen, “Measurement of refractive index of liquids using s- and p-polarized light,” Meas. Sci. Technol. 11, 74–76 (2000). [CrossRef]
  27. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003). [CrossRef]
  28. A. S. Andrushchak and B. G. Mytsyk, “Measurement of refractive indices of isotropic and crystalline materials using an interferometric method,” Meas. Tech. 35, 816–819(1992). [CrossRef]
  29. S. A. Alexandrov and I. V. Chernyh, “Interference method for determination of the refractive index and thickness,” Opt. Eng. 39, 2480–2486 (2000). [CrossRef]
  30. J. D. Olson, “Direct determination of temperature dependence of refractive index of liquids,” J. Chem. Phys. 58, 2321–2325 (1973). [CrossRef]
  31. M. Boyer-Donzelot and J. Barriol, “Interpretation of the experimental optical dispersion data of organic substances,” C. R. Seances Acad. Sci. Ser. C T273, 1085–1087 (1973).
  32. K. T. Tang, “One-term Sellmeier formula for dispersion of dilute gases,” J. Opt. Soc. Am. 62, 644–648 (1972). [CrossRef]
  33. B. W. Morrissey and C. J. Powell, “Interpolation of refractive index data,” Appl. Opt. 12, 1588–1591 (1973). [CrossRef]
  34. E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys. 73, 611–614 (2005). [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, corrected 6th ed. (Pergamon, 1984).
  36. W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. Phys. 219, 272–282 (1871). [CrossRef]
  37. P. Drude, “Optische Eigenschaften und Elektronentheorie,” Ann. Phys. 319, 677–725 (1904). [CrossRef]
  38. W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.
  39. M. Bass, E. W. van Stryland, D. R. Williams, and W. L. Wolfe, eds., Handbook of Optics, Volume II: Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, 1995).
  40. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).
  41. E. Jones, T. Oliphant, and P. Peterson, “SciPy: open source scientific tools for Python” (to be published).
  42. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984). [CrossRef]
  43. A. G. Schott, “Schott glass collection datasheets” (2011).
  44. W. E. Forsythe, Smithsonian Physical Tables, 9th ed.(Smithsonian Institution, 1954).
  45. J. R. Partington, An Advanced Treatise on Physical Chemistry, 1st ed. (Longmans, 1954).
  46. Huntsman, “Araldite 2020 data sheet” (2004).
  47. J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994). [CrossRef]
  48. S. W. George and J. A. Campbell, “Refractive indices of some carbon compounds as a function of temperature,” J. Chem. Educ. 44, 393 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited