Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface

Not Accessible

Your library or personal account may give you access

Abstract

We report that self-collimated beams from a photonic crystal can be refracted to any direction in air by introducing an additional layer composed of dielectric rods at a photonic crystal surface. The refraction angle can be tuned from negative to positive value by adjusting the period of the additional layer. The refracted beam power can be also controllable by varying the radii of rods in the layer and the distance between the layer and the surface. The grating-induced omnidirectional refraction of self-collimated beams could provide an efficient way to manipulate light propagation and increase the possibility of application of self-collimated beams.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Beam splitting using self-collimation phenomenon in photonic crystal

Mahdi Aghadjani and Mahmoud Shahabadi
J. Opt. Soc. Am. B 30(12) 3140-3144 (2013)

Polarization-insensitive self-collimation and beam splitter based on triangular-lattice annular photonic crystals

Liyong Jiang, Hong Wu, and Xiangyin Li
J. Opt. Soc. Am. B 30(5) 1248-1255 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved