OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3338–3344

Numerical investigation on the effects of fabrication conditions on fiber Bragg grating spectra using the phase mask technique

Betty P. Kouskousis, Daniel J. Kitcher, Stephen F. Collins, and Greg W. Baxter  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3338-3344 (2013)
http://dx.doi.org/10.1364/AO.52.003338


View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical investigation on how fiber Bragg grating fabrication conditions using the phase mask technique affect the harmonic components of the Bragg wavelength is presented. Both the properties of the phase mask and saturation effects are investigated to determine the underlying cause of the rise of various harmonic reflections other than the Bragg wavelength. Results are compared with published data by various authors.

© 2013 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(100.0100) Image processing : Image processing

ToC Category:
Image Processing

History
Original Manuscript: January 23, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 5, 2013
Published: May 7, 2013

Citation
Betty P. Kouskousis, Daniel J. Kitcher, Stephen F. Collins, and Greg W. Baxter, "Numerical investigation on the effects of fabrication conditions on fiber Bragg grating spectra using the phase mask technique," Appl. Opt. 52, 3338-3344 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  2. R. Kashyap, Fiber Bragg Gratings/Raman Kashyap(Academic, 1999).
  3. A. Othonos, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing/Andreas Othonos, Kyriacos Kalli (Artech, 1999).
  4. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993). [CrossRef]
  5. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol. 15, 1263–1276 (1997). [CrossRef]
  6. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first and second-order diffraction wavelengths of Bragg gratings,” IEEE Proc. Optoelectron. 144, 156–161 (1997).
  7. J. Echevarria, A. Quintela, C. Jauregui, and J. M. Lopez-Higuera, “Uniform fiber Bragg grating first- and second-order diffraction wavelength experimental characterization for strain-temperature discrimination,” IEEE Photon. Technol. Lett. 13, 696–698 (2001). [CrossRef]
  8. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993). [CrossRef]
  9. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005). [CrossRef]
  10. S. P. Yam, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, “Investigation of wavelength variations of fibre Bragg grating features using a chirped phase mask,” J. Opt. A 10, 055307 (2008). [CrossRef]
  11. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009). [CrossRef]
  12. C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A 29, 1259–1268 (2012). [CrossRef]
  13. S. A. Wade, W. G. A. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A 29, 1597–1605 (2012). [CrossRef]
  14. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128–6135 (2000). [CrossRef]
  15. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. M. Ding, and X. L. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29, 1458–1460 (2004). [CrossRef]
  16. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003). [CrossRef]
  17. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995). [CrossRef]
  18. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 3rd ed. (Pergamon, 1965), pp. xxviii, 808.
  20. T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency,” Opt. Commun. 284, 567–572 (2011). [CrossRef]
  21. R. J. Espejo, M. Svalgaard, and S. D. Dyer, “Characterizing fiber Bragg grating index profiles to improve the writing process,” IEEE Photon. Technol. Lett. 18, 2242–2244 (2006). [CrossRef]
  22. H. Patrick and S. L. Gilbert, “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited