OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3404–3411

All-optical NAND/NOT/AND/OR logic gates based on combined Brillouin gain and loss in an optical fiber

Daisy Williams, Xiaoyi Bao, and Liang Chen  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3404-3411 (2013)
http://dx.doi.org/10.1364/AO.52.003404


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A combined Brillouin gain and loss process has been proposed in a polarization maintaining optical fiber to realize all-optical NAND/NOT/AND/OR logic gates in the frequency domain. A model describing the interaction of a Stokes, anti-Stokes, and continuous wave and two acoustic waves inside a fiber, ranging in length from 350–2300 m, was used to theoretically model the gates. Through the optimization of the pump depletion and gain saturation in the combined gain and loss process, switching contrasts of 20%–83% have been simulated for different configurations.

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated
(200.0200) Optics in computing : Optics in computing
(200.4660) Optics in computing : Optical logic

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 9, 2012
Revised Manuscript: March 27, 2013
Manuscript Accepted: April 5, 2013
Published: May 10, 2013

Citation
Daisy Williams, Xiaoyi Bao, and Liang Chen, "All-optical NAND/NOT/AND/OR logic gates based on combined Brillouin gain and loss in an optical fiber," Appl. Opt. 52, 3404-3411 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011). [CrossRef]
  2. T. Chattopadhyay, “Optical reversible programmable Boolean logic unit,” Appl. Opt. 51, 5266–5271 (2012). [CrossRef]
  3. M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009). [CrossRef]
  4. J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010). [CrossRef]
  5. Y. Wu, T. Shih, and M. Chen, “New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer,” Opt. Express 16, 248–257 (2008). [CrossRef]
  6. M. Nazari and M. Haghparast, “Novel design of all-optical reversible logic gate using Mach–Zehnder interferometer in the field of nanotechnology,” Australian J. Basic Appl. Sci. 5, 923–929 (2011). [CrossRef]
  7. T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012). [CrossRef]
  8. Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” Photon. Tech. Lett. 18, 1341–1343 (2006). [CrossRef]
  9. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005). [CrossRef]
  10. D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998). [CrossRef]
  11. C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004). [CrossRef]
  12. X. Ye, P. Ye, and M. Zhang, “All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer,” Opt. Fiber Technol. 12, 312–316 (2006). [CrossRef]
  13. T. Chattopadhyay, “All-optical programmable Boolean logic unit using SOA-MZI switch,” IET Optoelectronics 5, 270–280(2011). [CrossRef]
  14. K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417–426 (1996). [CrossRef]
  15. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392–3399 (2006). [CrossRef]
  16. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40  Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711–1713 (2006). [CrossRef]
  17. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007). [CrossRef]
  18. Z. Y. Shen and L. L. Wu, “Reconfigurable optical logic unit with terahertz optical asymmetric demultiplexer and electro-optic switches,” Appl. Opt. 47, 3737–3742 (2008). [CrossRef]
  19. T. Chattopadhyay, “Eliminating the additional input beam in all-optical XOR gate using terahertz optical asymmetric demultiplexer (TOAD) based interferometer: a theoretical analysis,” Optik International J. Light Electron. Opt. 122, 1486–1491 (2011). [CrossRef]
  20. T. Chattopadhyay, “All-optical terahertz optical asymmetric demultiplexer (TOAD) based binary comparator: a proposal,” J. Nonlinear Opt. Phys. Mater. 18, 471–480 (2009). [CrossRef]
  21. T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. 17, 558–567 (2011). [CrossRef]
  22. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986). [CrossRef]
  23. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987). [CrossRef]
  24. T. Chattopadhyay and T. Sarkar, “All-optical by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion,” Opt. Laser Technol. 44, 1722–1728 (2012). [CrossRef]
  25. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005). [CrossRef]
  26. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.
  27. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680(2001). [CrossRef]
  28. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981). [CrossRef]
  29. R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982). [CrossRef]
  30. W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012). [CrossRef]
  31. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006). [CrossRef]
  32. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007). [CrossRef]
  33. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011). [CrossRef]
  34. R. Boyd, Nonlinear Optics (Academic, 1992).
  35. L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998). [CrossRef]
  36. Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28, 2621–2626 (2010). [CrossRef]
  37. A. Kumar, Switching Theory and Logic Design (PHI Learning Private Limited, 2008).
  38. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef]
  39. S. H. Larsen, M. E. V. Pedersen, L. Gruner-Nielsen, M. F. Yan, E. M. Monberg, P. W. Wisk, and K. Rottwitt, “Polarization maintaining higher order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37, 4170–4172 (2012). [CrossRef]
  40. M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002). [CrossRef]
  41. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005). [CrossRef]
  42. Y. Miyoshi, R. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16, 2570–2577 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited