OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 15 — May. 20, 2013
  • pp: 3637–3644

Generalized diffractive optical elements with asymmetric harmonic response and phase control

Jorge Albero, Jeffrey A. Davis, Don M. Cottrell, Charles E. Granger, Kyle R. McCormick, and Ignacio Moreno  »View Author Affiliations

Applied Optics, Vol. 52, Issue 15, pp. 3637-3644 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a method to generate phase-only diffractive beam splitters allowing asymmetry of the target diffracted orders, as well as providing a tailored phase difference between the diffracted orders. We apply a well-established design method that requires the determination of a set of numerical parameters, and avoids the use of image iterative algorithms. As a result, a phase lookup table is determined that can be used for any situation where a first-order (blazed) diffractive element is modified to produce higher orders with desired intensity and/or phase relation. As examples, we demonstrate the phase difference control on triplicators, as well as on other generalized diffractive elements like bifocal Fresnel lenses and phase masks for the generation of vortex beams. Results are experimentally demonstrated by encoding the calculated phase pattern onto parallel-aligned liquid crystal spatial light modulators.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics

ToC Category:
Diffraction and Gratings

Original Manuscript: January 11, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 25, 2013
Published: May 20, 2013

Jorge Albero, Jeffrey A. Davis, Don M. Cottrell, Charles E. Granger, Kyle R. McCormick, and Ignacio Moreno, "Generalized diffractive optical elements with asymmetric harmonic response and phase control," Appl. Opt. 52, 3637-3644 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. P. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  2. D. C. O’Shea, J. W. Beletic, and M. Poutus, “Binary-mask generation for diffractive optical elements using microcomputers,” Appl. Opt. 32, 2566–2572 (1993). [CrossRef]
  3. H. Dammann and K. Görtler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971). [CrossRef]
  4. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34, 5961–5969 (1995). [CrossRef]
  5. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28, 971–973 (2003). [CrossRef]
  6. V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997). [CrossRef]
  7. I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang, and X. C. Yuan, “Encoding generalized phase functions on Dammann gratings,” Opt. Lett. 35, 1536–1538 (2010). [CrossRef]
  8. J. L. Horner and J. R. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609–611 (1985). [CrossRef]
  9. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  10. J. Bengtsson, “Design of fan-out kinoforms in the entire scalar diffraction regime with an optimal-rotation-angle method,” Appl. Opt. 36, 8435–8444 (1997). [CrossRef]
  11. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007). [CrossRef]
  12. D. Prongué, H. P. Herzig, R. Dändliker, and M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992). [CrossRef]
  13. J. N. Mait, “Design of binary-phase and multiphase Fourier gratings for array generation,” J. Opt. Soc. Am. A 7, 1514–1518 (1990). [CrossRef]
  14. L. A. Romero and F. M. Dickey, “Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings,” J. Opt. Soc. Am. A 24, 2280–2295 (2007). [CrossRef]
  15. L. A. Romero and F. M. Dickey, “The mathematical theory of laser beam-splitting gratings,” Prog. Opt. 54, 319–386 (2010). [CrossRef]
  16. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Cincotti, E. Di Fabrizio, and M. Gentili, “Analytical derivation of the optimum triplicator,” Opt. Commun. 157, 13–16 (1998). [CrossRef]
  17. V. Y. Miklyaev, W. Imgrunt, T. Bizjak, L. Aschke, V. N. Lissotschenko, V. S. Pavelyev, and D. G. Kachalov, “Novel continuously shaped diffractive optical elements enable high efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010). [CrossRef]
  18. Yu. V. Miklyaev, A. Krasnaberski, M. Ivanenko, A. Mikhailov, W. Imgrunt, L. Aschke, and V. N. Lissotchenko, “Efficient diffractive optical elements from glass with continuous profiles,” Proc. SPIE 7913, 79130B (2011). [CrossRef]
  19. J. Albero and I. Moreno, “Grating beam splitting with liquid crystal adaptive optics,” J. Opt. 14, 075704 (2012). [CrossRef]
  20. J. Albero, I. Moreno, J. A. Davis, D. M. Cottrell, and D. Sand, “Generalized phase diffraction gratings with tailored intensity,” Opt. Lett. 37, 4227–4229 (2012). [CrossRef]
  21. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999). [CrossRef]
  22. J. Ren and P. Guo, “Study on four-step computer-generated hologram with same diffraction efficiency of the zeroth and first-order,” Opt. Eng. 50, 08501 (2011).
  23. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001). [CrossRef]
  24. C. R. Fernández-Pousa, I. Moreno, J. A. Davis, and J. Adachi, “Polarization diffraction-grating triplicators,” Opt. Lett. 26, 1651–1653 (2001). [CrossRef]
  25. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010). [CrossRef]
  26. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince–Gaussian beams with a liquid–crystal display,” Opt. Lett. 31, 649–651 (2006). [CrossRef]
  27. J. B. Bentley, J. A. Davis, J. Albero, and I. Moreno, “Self-interferometric technique for visualization of phase patterns encoded onto a liquid-crystal display,” Appl. Opt. 45, 7791–7794 (2006). [CrossRef]
  28. http://support.microsoft.com/kb/214115 .
  29. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  30. J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35, 599–602 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (476 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited