OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 17 — Jun. 10, 2013
  • pp: 3891–3901

AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry

Qingli Li, Dongrong Xu, Xiaofu He, Yiting Wang, Zenggan Chen, Hongying Liu, Qintong Xu, and Fangmin Guo  »View Author Affiliations

Applied Optics, Vol. 52, Issue 17, pp. 3891-3901 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The neuroanatomical morphology of nerve fibers is an important description for understanding the pathological aspects of nerves. Different from the traditional automatic nerve morphometry methods, a molecular hyperspectral imaging system based on an acousto-optic tunable filter (AOTF) was developed and used to identify unstained nerve histological sections. The hardware, software, and system performance of the imaging system are presented and discussed. The gray correction coefficient was used to calibrate the system’s spectral response and to remove the effects of noises and artifacts. A spatial–spectral kernel-based approach through the support vector machine formulation was proposed to identify nerve fibers. This algorithm can jointly use both the spatial and spectral information of molecular hyperspectral images for segmentation. Then, the morphological parameters such as fiber diameter, axon diameter, myelin sheath thickness, fiber area, and g-ratio were calculated and evaluated. Experimental results show that the hyperspectral-based method has the potential to recognize and measure the nerve fiber more accurately than traditional methods.

© 2013 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.0180) Imaging systems : Microscopy
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: December 14, 2012
Revised Manuscript: March 6, 2013
Manuscript Accepted: April 19, 2013
Published: June 3, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Qingli Li, Dongrong Xu, Xiaofu He, Yiting Wang, Zenggan Chen, Hongying Liu, Qintong Xu, and Fangmin Guo, "AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry," Appl. Opt. 52, 3891-3901 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Marx, P. Kumar, S. Dhalapathy, K. Prasad, and C. A. Marx, “Microanatomical and immunohistochemical study of the human lateral antebrachial cutaneous nerve of forearm at the antecubital fossa and its clinical implications,” Clin. Anat. 23, 693–701 (2010). [CrossRef]
  2. X. M. Zhao, Z. K. Pan, J. Y. Wu, G. M. Zhou, and Y. J. Zeng, “Automatic identification and morphometry of optic nerve fibers in electron microscopy images,” Comput. Med. Imaging Graph. 34, 179–184 (2010). [CrossRef]
  3. E. Romero, O. Cuisenaire, J. F. Denef, J. Delbeke, B. Macq, and C. Veraart, “Automatic morphometry of nerve histological sections,” J. Neurosci. Methods 97, 111–122 (2000). [CrossRef]
  4. S. A. R. Campos, L. S. Sanada, K. L. Sato, and V. P. S. Fazan, “Morphometry of saphenous nerve in young rats,” J. Neurosci. Methods 168, 8–14 (2008). [CrossRef]
  5. F. Urso-Baiarda and A. O. Grobbelaar, “Practical nerve morphometry,” J. Neurosci. Methods 156, 333–341 (2006). [CrossRef]
  6. G. Lauria, D. Cazzato, C. Porretta-Serapiglia, J. Casanova-Molla, M. Taiana, P. Penza, R. Lombardi, C. G. Faber, and I. S. J. Merkies, “Morphometry of dermal nerve fibers in human skin,” Neurology 77, 242–249 (2011). [CrossRef]
  7. A. F. H. Goetz and V. Srivastava, “Mineralogical mapping in the Cuprite mining district, Nevada,” in Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop (JPL, 1985), pp. 22–29.
  8. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985). [CrossRef]
  9. A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the earth: a personal view,” Rem. Sensing Environ. 113, S5–S16 (2009). [CrossRef]
  10. J. Qin, “Hyperspectral imaging instruments,” in Hyperspectral Imaging for Food Quality Analysis and Control, S. Professor Da-Wen, ed. (Academic, 2010), pp. 129–172.
  11. P. J. Treado, I. W. Levin, and E. Neil Lewis, “Indium antimonide (InSb) focal plane array (FPA) detection for near-infrared imaging microscopy,” Appl. Spectrosc. 48, 607–615 (1994). [CrossRef]
  12. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy—acoustooptic and liquid-crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994). [CrossRef]
  13. E. S. Wachman, W. H. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997). [CrossRef]
  14. R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73, 1223–1231 (1997). [CrossRef]
  15. P. M. Kasili and T. Vo-Dinh, “Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications,” Cytom. A 69A, 835–841 (2006). [CrossRef]
  16. Y. N. Guan, Q. L. Li, Y. T. Wang, H. Y. Liu, and Z. Q. Zhu, “Pathological leucocyte segmentation algorithm based on hyperspectral imaging technique,” Opt. Eng. 51, 053202 (2012). [CrossRef]
  17. H. Y. Liu, Q. L. Li, L. Xu, Y. T. Wang, J. G. Liu, and Y. Q. Xue, “Evaluation of erythropoietin efficacy on diabetic retinopathy based on molecular hyperspectral imaging (MHSI) system,” J. Infrared Millimeter Waves 31, 248–253 (2012). [CrossRef]
  18. S. J. Leavesley, N. Annamdevula, J. Boni, S. Stocker, K. Grant, B. Troyanovsky, T. C. Rich, and D. F. Alvarez, “Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue,” J. Biophotonics 5, 67–84 (2012). [CrossRef]
  19. H. Wang, S. D. Babacan, and K. Sayood, “Lossless hyperspectral-image compression using context-based conditional average,” IEEE Trans. Geosci. Remote Sens. 45, 4187–4193 (2007). [CrossRef]
  20. E. S. Wachman, W. H. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35, 5220–5226 (1996). [CrossRef]
  21. Q. Li, J. Zhang, Y. Wang, and G. Xu, “Molecular spectral imaging system for quantitative immunohistochemical analysis of early diabetic retinopathy,” Appl. Spectrosc. 63, 1336–1342 (2009). [CrossRef]
  22. A. Plaza, P. Martinez, J. Plaza, and R. Perez, “Spatial/spectral analysis of hyperspectral image data,” in 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (IEEE, 2004), pp. 298–307.
  23. L. Zhang, X. Huang, B. Huang, and P. Li, “A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens. 44, 2950–2961 (2006). [CrossRef]
  24. L. Jun, J. M. Bioucas-Dias, and A. Plaza, “Spectral and spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,” IEEE Trans. Geosci. Remote Sens. 50, 809–823 (2012). [CrossRef]
  25. B. Yver and R. Marion, “A theoretical framework for hyperspectral anomaly detection using spectral and spatial a priori information,” IEEE Geosci. Remote Sens. Lett. 4, 436–440 (2007). [CrossRef]
  26. A. J. Plaza, “Parallel spatial-spectral processing of hyperspectral images,” in Computational Intelligence for Remote Sensing, M. Grana and R. J. Duro, eds. (Springer-Verlag Berlin Heidelberg, 2008), pp. 163–192.
  27. M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” IEEE Trans. Geosci. Remote Sens. 46, 3804–3814 (2008). [CrossRef]
  28. M. Fauvel, J. Chanussot, and J. A. Benediktsson, “A spatial-spectral kernel-based approach for the classification of remote-sensing images,” Pattern Recogn. 45, 381–392 (2012). [CrossRef]
  29. K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. A. Benediktsson, “Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach,” IEEE Trans. Image Process. 21, 2008–2021 (2012). [CrossRef]
  30. M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Evaluation of kernels for multiclass classification of hyperspectral remote sensing data,” in IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2006), pp. 813–816.
  31. J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proc. IEEE 78, 678–689 (1990). [CrossRef]
  32. C. Vleggeert-Lankamp, R. J. van den Berg, H. K. P. Feirabend, E. Lakke, M. J. A. Malessy, and R. Thomeer, “Electrophysiology and morphometry of the A alpha- and A beta-fiber populations in the normal and regenerating rat sciatic nerve,” Exp. Neurol. 187, 337–349 (2004). [CrossRef]
  33. F. Ying-Lun, J. C. K. Chan, and R. T. Chin, “Automated analysis of nerve-cell images using active contour models,” IEEE Trans. Med. Imaging 15, 353–368 (1996). [CrossRef]
  34. Q. Li, Z. Chen, X. He, Y. Wang, H. Liu, and Q. Xu, “Automatic identification and quantitative morphometry of unstained spinal nerve using molecular hyperspectral imaging technology,” Neurochem. Int. 61, 1375–1384 (2012). [CrossRef]
  35. H. L. More, J. Chen, E. Gibson, J. M. Donelan, and M. F. Beg, “A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images,” J. Neurosci. Methods 201, 149–158 (2011). [CrossRef]
  36. D. A. Hunter, A. Moradzadeh, E. L. Whitlock, M. J. Brenner, T. A. Myckatyn, C. H. Wei, T. H. H. Tung, and S. E. Mackinnon, “Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve,” J. Neurosci. Methods 166, 116–124 (2007). [CrossRef]
  37. A. P. D. da Silva, C. E. R. Jordao, and V. P. S. Fazan, “Peripheral nerve morphometry: comparison between manual and semi-automated methods in the analysis of a small nerve,” J. Neurosci. Methods 159, 153–157 (2007). [CrossRef]
  38. B. Weyn, M. Van Remoortere, R. Nuydens, T. Meert, and G. van de Wouwer, “A multiparametric assay for quantitative nerve regeneration evaluation,” J. Microsc. 219, 95–101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited