OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4131–4136

Curved laser microjet in near field

Victor V. Kotlyar, Sergey S. Stafeev, and Alexey A. Kovalev  »View Author Affiliations


Applied Optics, Vol. 52, Issue 18, pp. 4131-4136 (2013)
http://dx.doi.org/10.1364/AO.52.004131


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the use of the finite-difference time-domain-based simulation and a scanning near-field optical microscope that has a metal cantilever tip, the diffraction of a linearly polarized plane wave of wavelength λ by a glass corner step of height 2λ is shown to generate a low divergence laser jet of a root-parabolic form: over a distance of 4.7λ on the optical axis, the beam path is shifted by 2.1λ. The curved laser jet of the FWHM length depth of focus=9.5λ has the diameter FWHM=1.94λ over the distance 5.5λ, and the intensity maximum is 5 times higher than the incident wave intensity. The discrepancy between the analytical and the experimental results amounts to 11%.

© 2013 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1940) Diffraction and gratings : Diffraction
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 14, 2013
Revised Manuscript: April 29, 2013
Manuscript Accepted: May 17, 2013
Published: June 12, 2013

Citation
Victor V. Kotlyar, Sergey S. Stafeev, and Alexey A. Kovalev, "Curved laser microjet in near field," Appl. Opt. 52, 4131-4136 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-18-4131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Kotlyar and M. A. Lichmanov, “Electromagnetic wave diffraction by an infinite circular cylinder with homogeneous layers,” Comput. Opt. 24, 26–32 (2002).
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3D photonic nanojets,” Opt. Express 13, 526–533 (2005). [CrossRef]
  3. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theory. Nanosci. 6, 1979–1992 (2009). [CrossRef]
  4. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008). [CrossRef]
  5. C.-H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J.-G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11, 2533–2537 (2011). [CrossRef]
  6. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom (2010), doi: 10.1117/2.1201002.002578. [CrossRef]
  7. V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, B. D. Clercq, A. V. Silhanek, Y. Jeyaram, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, S. Russev, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets,” Adv. Mater. 24, OP29–OP35 (2012). [CrossRef]
  8. F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012). [CrossRef]
  9. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19, 10206–10220 (2011). [CrossRef]
  10. J. Martin, J. Proust, D. Gerard, J.-L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37, 1274–1276 (2012). [CrossRef]
  11. D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20, 128–140 (2012). [CrossRef]
  12. S. S. Stafeev and V. V. Kotlyar, “Elongated photonic nanojet from truncated cylindrical zone plate,” J. Atom. Mol. Opt. Phys. 2012, 1 (2012), doi: 10.1155/2012/123872. [CrossRef]
  13. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef]
  14. J. Bamgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008). [CrossRef]
  15. P. Polynkin, N. Koselik, J. W. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009). [CrossRef]
  16. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849–861 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited