OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4323–4328

Bend-resistant large-mode-area photonic crystal fiber with a triangular-core

Xin Wang, Shuqin Lou, and Wenliang Lu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 18, pp. 4323-4328 (2013)
http://dx.doi.org/10.1364/AO.52.004323


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In view of its feasibility for fabrication and application, a bend-resistant large-mode-area photonic crystal fiber with a triangular core is proposed. In our design, the fiber proposes a solution to the issue of bend distortion. The mode field area of the fundamental mode at the wavelength of 1.064 μm achieves 930μm2 at the straight state and 815μm2 at a bending radius of 30 cm, respectively. The decrement of the mode field area at the bend state is only 12.473% compared to the straight state. Furthermore, when the fiber is bent with a bending radius of 30 cm, numerical results demonstrate that the fiber conforms to single-mode operation conditions and the bending orientation angle can be extended to ±55°. A large mode area at bent state and low sensitivity of bending orientation make the fiber of great potential in high-power fiber lasers.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 7, 2013
Revised Manuscript: April 30, 2013
Manuscript Accepted: May 23, 2013
Published: June 18, 2013

Citation
Xin Wang, Shuqin Lou, and Wenliang Lu, "Bend-resistant large-mode-area photonic crystal fiber with a triangular-core," Appl. Opt. 52, 4323-4328 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-18-4323


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27, 3010–3016 (2009). [CrossRef]
  2. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005). [CrossRef]
  3. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24, 1689–1697 (2007). [CrossRef]
  4. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15, 1794–1803 (2007). [CrossRef]
  5. I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010). [CrossRef]
  6. I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010). [CrossRef]
  7. M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010). [CrossRef]
  8. D. J. J. Hu, F. Luan, and P. P. Shum, “All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss,” Opt. Commun. 284, 1811–1814 (2011). [CrossRef]
  9. M. Napierała, T. Nasiłowski, E. Bereś-Pawlik, F. Berghmans, J. Wójcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fibre with low bending loss,” Opt. Express 18, 15408–15418 (2010). [CrossRef]
  10. M. Napierała, T. Nasilowski, E. Bereś-Pawlik, P. Mergo, F. Berghmans, and H. Thienpont, “Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss,” Opt. Express 19, 22628–22636 (2011). [CrossRef]
  11. M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011). [CrossRef]
  12. B. Rahman, “Finite element analysis of optical waveguides,” Progress Electromagn. Res. 10, 187–216 (1995).
  13. S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003). [CrossRef]
  14. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003). [CrossRef]
  15. J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007). [CrossRef]
  16. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single-mode holey fibers with low bending losses,” Opt. Express 13, 4770–4779 (2005). [CrossRef]
  17. J. Olszewski and M. Szpulak, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015–6022 (2005). [CrossRef]
  18. A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986). [CrossRef]
  19. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited