OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4438–4445

Numerical study of high-index-contrast Er:LiNbO3 photonic wire lasers optically pumped at 980 nm

Md. Sohel Mahmud Sher, Paolo Pintus, and Fabrizio Di Pasquale  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4438-4445 (2013)
http://dx.doi.org/10.1364/AO.52.004438


View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time [to our best knowledge] a high-index-contrast z-cut Er:LiNbO3 photonic wire waveguide laser, optically pumped at 980 nm wavelength, is designed for continuous-wave operation. Waveguide modes and laser characteristics are numerically computed using a developed full vectorial finite-element method based tool. In order to maximize the output power of the laser, the active cavity length and output mirror’s reflectivity have been optimized, considering different pump power and waveguide background losses. Efficient laser emission is theoretically predicted at 1531 nm wavelength for the fundamental TE mode and a value of threshold pump power as low as 0.2 mW has been computed.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(130.3730) Integrated optics : Lithium niobate

ToC Category:
Integrated Optics

History
Original Manuscript: January 11, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: May 20, 2013
Published: June 21, 2013

Citation
Md. Sohel Mahmud Sher, Paolo Pintus, and Fabrizio Di Pasquale, "Numerical study of high-index-contrast Er:LiNbO3 photonic wire lasers optically pumped at 980 nm," Appl. Opt. 52, 4438-4445 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. S. Bosso, “Applications of lithium niobate integrated optic in telecommunication systems,” Proc. SPIE 3620, 34–37 (1999). [CrossRef]
  2. M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.
  3. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996). [CrossRef]
  4. R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991). [CrossRef]
  5. P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992). [CrossRef]
  6. C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994). [CrossRef]
  7. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005). [CrossRef]
  8. J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996). [CrossRef]
  9. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987). [CrossRef]
  10. D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993). [CrossRef]
  11. C.-H. Huang and L. M. Caughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33, 1639–1640 (1997). [CrossRef]
  12. W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992). [CrossRef]
  13. S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011). [CrossRef]
  14. K. Kubodera and K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys. 50, 653–659 (1979). [CrossRef]
  15. D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996). [CrossRef]
  16. J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000). [CrossRef]
  17. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007). [CrossRef]
  18. M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010). [CrossRef]
  19. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009). [CrossRef]
  20. H. Hu, R. Ricken, and W. Sohler, “High refractive index contrast ridge waveguides in LiNbO3 thin film,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO-EQEC), Vol. 1 (2009), pp. 14–19.
  21. D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997). [CrossRef]
  22. GiD http://gid.cimne.upc.es/ .
  23. A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microwave Theory Tech. 25, 353–360 (1977). [CrossRef]
  24. J. Jin, The Finite Element Method in Electro-magnetics2nd ed. (Wiley, 2002).
  25. http://www.roditi.com/Optical/Erbium_Lithium.html .
  26. C.-H. Huang and L. M. Caughan, “980 nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited