OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4446–4461

Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar

James B. Abshire, Haris Riris, Clark J. Weaver, Jianping Mao, Graham R. Allan, William E. Hasselbrack, and Edward V. Browell  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4446-4461 (2013)
http://dx.doi.org/10.1364/AO.52.004446


View Full Text Article

Enhanced HTML    Acrobat PDF (3502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 8–10 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

© 2013 USG

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3510) Lasers and laser optics : Lasers, fiber
(280.3640) Remote sensing and sensors : Lidar
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: January 31, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: April 11, 2013
Published: June 21, 2013

Citation
James B. Abshire, Haris Riris, Clark J. Weaver, Jianping Mao, Graham R. Allan, William E. Hasselbrack, and Edward V. Browell, "Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar," Appl. Opt. 52, 4446-4461 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. P. Tans, I. Y. Fung, and T. Takahashi, “Observational constraints on the global atmospheric CO2 budget,” Science 247, 1431–1438 (1990). [CrossRef]
  2. S. M. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P. Tans, “A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models,” Science 282, 442–446 (1998). [CrossRef]
  3. ESA A-SCOPE Mission Assessment report, http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf (2008).
  4. Z. Kuang, J. Margolis, G. Toon, D. Crisp, and Y. Yung, “Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study,” Geophys. Res. Lett. 29, 11-1–11-4 (2002). [CrossRef]
  5. D. M. O’Brien and P. J. Rayner, “Global observations of carbon budget 2, CO2 concentrations from differential absorption of reflected sunlight in the 1.61 um band of CO2,” J. Geophys. Res. 107, 4354 (2002). [CrossRef]
  6. A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring,” Appl. Opt. 48, 6716–6733 (2009). [CrossRef]
  7. Y. Yoshida, Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, “Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectra observations by the Greenhouse gases observing satellite,” Atmos. Meas. Tech. 4, 717–734 (2011). [CrossRef]
  8. E. Dufour and F. M. Breon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595–3609 (2003). [CrossRef]
  9. J. Mao and S. R. Kawa, “Sensitivity study for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43, 914–927 (2004). [CrossRef]
  10. I. Aben, O. Hasekamp, and W. Hartmann, “Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 104, 450–459 (2007). [CrossRef]
  11. United States National Research Council, “Earth science and applications from space: national imperatives for the next decade and beyond,” http://www.nap.edu/ (2007).
  12. NASA ASCENDS Mission Science Definition and Planning Workshop Report, http://cce.nasa.gov/ascends/12-30-08%20ASCENDS_Workshop_Report%20clean.pdf (2008).
  13. Y. Durand, J. Caron, P. Bensi, P. Ingmann, J. Bézy, and Meynart, “A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar,” in Proceedings of the 8th International Symposium on Tropospheric Profiling, Delft, The Netherlands, 18–23 October2009.
  14. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008). [CrossRef]
  15. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009). [CrossRef]
  16. R. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, 1992), pp. 205–213.
  17. C. Weitkamp, Lidar: Range Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), pp. 187–238.
  18. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus Ser. B 62, 770–783 (2010). [CrossRef]
  19. G. Spiers, R. Menzies, J. Jacob, L. Christensen, M. Phillips, Y. Choi, and E. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50, 2098–2111 (2011). [CrossRef]
  20. H. Riris, J. Abshire, G. Allan, J. Burris, J. Chen, S. Kawa, J. Mao, M. Krainak, M. Stephen, X. Sun, and E. Wilson, “A laser sounder for measuring atmospheric trace gases from space,” Proc. SPIE 6750, 67500U (2007). [CrossRef]
  21. G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in Proceedings of 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1534–1540.
  22. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, A. Yu, A. Amediek, Y. Choi, and E. V. Browell, “A lidar approach to measure CO2 concentrations from space for the ASCENDS Mission,” Proc. SPIE 7832, 78320D (2010). [CrossRef]
  23. A. Amediek, X. Sun, and J. B. Abshire, “Analysis of range measurements from a pulsed airborne CO2 integrated path differential absorption lidar,” IEEE Trans. Geosci. Remote Sens. 51, 2498–2504 (2013). [CrossRef]
  24. M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplified transmitter,” Opt. Lett. 32, 2073–2076 (2007). [CrossRef]
  25. M. A. Stephen, J. Mao, J. B. Abshire, S. R. Kawa, X. Su, and M. A. Krainak, “Oxygen spectroscopy laser sounding instrument for remote sensing of atmospheric pressure,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1–6.
  26. J. Mao, S. R. Kawa, J. B. Abshire, and H. Riris, “Sensitivity studies for a space-based CO2 laser sounder,” in Transactions of the American Geophysical Union, Vol. 88 (2007), abstract A13D-1500.
  27. X. Sun and J. Abshire, “Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation,” Opt. Express 20, 21291–21304 (2012). [CrossRef]
  28. NASA-Glenn Lear-25, airbornescience.nasa.gov/aircraft/learjet_25 (2010).
  29. Y. Choi, S. A. Vay, K. P. Vadevu, A. J. Soja, J.-H. Woo, S. R. Nolf, G. W. Sachse, G. S. Diskin, D. R. Blake, N. J. Blake, H. B. Singh, M. A. Avery, A. Fried, L. Pfister, and H. E. Fuelberg, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008). [CrossRef]
  30. S. Vay, J. Woo, B. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. Atmos. 108, 27 (2003). [CrossRef]
  31. C. Rodgers, Inverse Methods for Atmospheric Soundings, Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics (World Scientific, 2000), p. 238.
  32. L. S. Rothman, I. E. Gordon, A. Barbe, D. ChrisBenner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Danaj, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. VanderAuwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  33. X. Sun and J. B. Abshire, “Receiver performance analysis of a photon counting laser sounder for measuring atmosphere CO2 concentration,” in ILRC-25 Conference Proceedings (Curran Associates, 2011), pp. 1320–1323.
  34. J. Abshire, H. Riris, G. Allan, X. Sun, J. Mao, C. Weaver, A. Yu, J. Chen, M. Rodriguez, and S. Kawa, “Pulsed lidar for measurements of CO2 concentrations for the ASCENDS mission,” in NASA ESTF 2011 Conference, Pasadena, California (June2011), paper B8P1. Available from http://esto.nasa.gov/conferences/estf2011/presentations/Abshire_ESTF2011.pdf .
  35. X. Sun, NASA Goddard, private communication (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited