OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4515–4526

Characterization of a compressive imaging system using laboratory and natural light scenes

Stephen J. Olivas, Yaron Rachlin, Lydia Gu, Brian Gardiner, Robin Dawson, Juha-Pekka Laine, and Joseph E. Ford  »View Author Affiliations

Applied Optics, Vol. 52, Issue 19, pp. 4515-4526 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (10950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compressive imagers acquire images, or other optical scene information, by a series of spatially filtered intensity measurements, where the total number of measurements required depends on the desired image quality. Compressive imaging (CI) offers a versatile approach to optical sensing which can improve size, weight, and performance (SWaP) for multispectral imaging or feature-based optical sensing. Here we report the first (to our knowledge) systematic performance comparison of a CI system to a conventional focal plane imager for binary, grayscale, and natural light (visible color and infrared) scenes. We generate 1024×1024 images from a range of measurements (0.1%–100%) acquired using digital (Hadamard), grayscale (discrete cosine transform), and random (Noiselet) CI basis sets. Comparing the outcome of the compressive images to conventionally acquired images, each made using 1% of full sampling, we conclude that the Hadamard Transform offered the best performance and yielded images with comparable aesthetic quality and slightly higher spatial resolution than conventionally acquired images.

© 2013 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: February 28, 2013
Revised Manuscript: May 1, 2013
Manuscript Accepted: May 19, 2013
Published: June 25, 2013

Stephen J. Olivas, Yaron Rachlin, Lydia Gu, Brian Gardiner, Robin Dawson, Juha-Pekka Laine, and Joseph E. Ford, "Characterization of a compressive imaging system using laboratory and natural light scenes," Appl. Opt. 52, 4515-4526 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  2. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006). [CrossRef]
  3. E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006). [CrossRef]
  4. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006). [CrossRef]
  5. M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. F. Kelly, and R. G. Baraniuk, “An architecture for compressive imaging,” in 2006 IEEE International Conference on Image Processing (IEEE, 2006) pp. 1273–1276.
  6. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008). [CrossRef]
  7. L. McMackin, M. A. Herman, B. Chatterjee, and M. Weldon, “A high-resolution SWIR camera via compressed sensing,” Proc. SPIE 8353, 835303 (2012). [CrossRef]
  8. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, 2006).
  9. D. L. Ruderman, “Origins of scaling in natural images,” Vis. Res. 37, 3385–3398 (1997). [CrossRef]
  10. R. P. Millane, S. Alzaidi, and W. H. Hsiao, “Scaling and power spectra of natural images,” in Proceedings of Image and Vision Computing New Zealand, D. G. Bailey, ed. (Massey University, 2003), pp. 148–153.
  11. W. H. Hsiao and R. P. Millane, “Effects of occlusion, edges, and scaling on the power spectra of natural images,” J. Opt. Soc. Am. A 22, 1789–1797 (2005). [CrossRef]
  12. G. Frenkel, E. Katzav, M. Schwartz, and N. Sochen, “Distribution of anomalous exponents of natural images,” Phys. Rev. Lett. 97, 103902 (2006). [CrossRef]
  13. R. G. Baraniuk, “Compressive sensing [Lecture Notes],” IEEE Signal Process. Mag. 24, 118–121 (2007). [CrossRef]
  14. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
  15. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008). [CrossRef]
  16. M. A. Neifeld and J. Ke, “Optical architectures for compressive imaging,” Appl. Opt. 46, 5293–5303 (2007). [CrossRef]
  17. R. Robucci, L. K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2008 (IEEE, 2008), pp. 5125–5128.
  18. Y. Oike and A. E. Gamal, “A 256×256 CMOS image sensor with ΔΣ-based single-shot compressed sensing,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2012), pp. 386–388.
  19. L. J. Hornbeck, “Digital light processing: a new MEMS-based display technology,” in Technical Digest of the Institute of Electrical Engineers of Japan 14th Sensor Symposium (IEEJ, Kawasaki, Japan, 1996), pp. 297–304.
  20. S. Becker, J. Bobin, and E. Candès, “NESTA: a fast and accurate first-order method for sparse recovery,” SIAM J. Imaging Sci. 4, 1–39 (2011).
  21. D. Doherty and G. Hewlett, “10.4: phased reset timing for improved digital micromirror device (DMD) brightness,” Soc. Inf. Disp. Symp. Dig. Tech. Pap. 29, 125–128 (1998). [CrossRef]
  22. J. Ke, P. Shankar, and M. A. Neifeld, “Distributed imaging using an array of compressive cameras,” Opt. Commun. 282, 185–197 (2009). [CrossRef]
  23. M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003). [CrossRef]
  24. P. K. Baheti and M. A. Neifeld, “Feature-specific structured imaging,” Appl. Opt. 45, 7382–7391 (2006). [CrossRef]
  25. H. S. Pal, D. Ganotra, and M. A. Neifeld, “Face recognition by using feature-specific imaging,” Appl. Opt. 44, 3784–3794 (2005). [CrossRef]
  26. P. K. Baheti and M. A. Neifeld, “Recognition using information-optimal adaptive feature-specific imaging,” J. Opt. Soc. Am. A 26, 1055–1070 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited