OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4640–4651

Rayleigh–Brillouin scattering profiles of air at different temperatures and pressures

Ziyu Gu, Benjamin Witschas, Willem van de Water, and Wim Ubachs  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4640-4651 (2013)
http://dx.doi.org/10.1364/AO.52.004640


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rayleigh–Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth’s atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of λ=366.8nm detect spontaneous RB scattering at a 90° scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1% rms noise level or better. The experimental results have been compared to a kinetic line-shape model, the acclaimed Tenti S6 model, considered to be most appropriate for such conditions, under the assumption that air can be treated as an effective single-component gas with temperature-scaled values for the relevant macroscopic transport coefficients. The elusive transport coefficient, the bulk viscosity ηb, is effectively derived by a comparing the measurements to the model, yielding an increased trend from 1.0 to 2.5×105kg·m1·s1 for the temperature interval. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2%, meeting the requirements for the future RB-scattering LIDAR missions in the Earth’s atmosphere. However, the systematic 2% deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it is demonstrated that the RB scattering data in combination with the Tenti S6 model can be used to retrieve the actual gas temperatures.

© 2013 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.5820) Scattering : Scattering measurements
(290.5830) Scattering : Scattering, Brillouin
(290.5840) Scattering : Scattering, molecules
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Scattering

History
Original Manuscript: May 24, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 31, 2013
Published: June 27, 2013

Citation
Ziyu Gu, Benjamin Witschas, Willem van de Water, and Wim Ubachs, "Rayleigh–Brillouin scattering profiles of air at different temperatures and pressures," Appl. Opt. 52, 4640-4651 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Strutt, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philos. Mag. 47, 375–384 (1899).
  2. H. Naus and W. Ubachs, “Experimental verification of Rayleigh scattering cross sections,” Opt. Lett. 25, 347–349 (2000). [CrossRef]
  3. M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transfer 92, 293–310 (2005). [CrossRef]
  4. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010). [CrossRef]
  5. C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972). [CrossRef]
  6. G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  7. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line-profiles,” Appl. Opt. 22, 3668–3670 (1983). [CrossRef]
  8. X. G. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh–Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002). [CrossRef]
  9. X. G. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh–Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004). [CrossRef]
  10. European Space Agency, “ADM-Aeolus,” (European Space Research and Technology Centre, 2008).
  11. M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. S. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010). [CrossRef]
  12. B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal LIDAR measurements for the proof of spontaneous Rayleigh–Brillouin scattering in the atmosphere,” Appl. Opt. 51, 6207–6219 (2012). [CrossRef]
  13. X. Pan, “Coherent Rayleigh–Brillouin scattering,” Ph.D. Thesis (Princeton University, 2003).
  14. G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300 K,” Physica 64, 278–288 (1973). [CrossRef]
  15. J. F. Xu, X. B. Ren, W. P. Gong, R. Dai, and D. H. Liu, “Measurement of the bulk viscosity of liquid by Brillouin scattering,” Appl. Opt. 42, 6704–6709 (2003). [CrossRef]
  16. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh–Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133, 164315 (2010). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  18. C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechaincs (North-Holland, 1964).
  19. T. D. Rossing, Springer Handbook of Acoustics (Springer, 2007).
  20. F. M. White, Fluid Mechanics (McGraw-Hill, 1998).
  21. R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999). [CrossRef]
  22. L. Tisza, “Supersonic absorption and Stokes’ viscosity relation,” Phys. Rev. 61, 531–536 (1942). [CrossRef]
  23. X. G. Pan, M. N. Shneider, and R. B. Miles, “Power spectrum of coherent Rayleigh–Brillouin scattering in carbon dioxide,” Phys. Rev. A 71, 045801 (2005). [CrossRef]
  24. Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, “A Rayleigh–Brillouin scattering spectrometer for ultraviolet wavelengths,” Rev. Sci. Instrum. 83, 053112 (2012). [CrossRef]
  25. H. B. Zhang, Z. J. Yuan, J. Zhou, J. X. Dong, Y. R. Wei, and Q. H. Lou, “Laser-induced fluorescence of fused silica irradiated by ArF excimer laser,” J. Appl. Phys. 110, 013107 (2011). [CrossRef]
  26. B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh–Brillouin scattering in atomic and molecular species,” Opt. Express 20, 12975–12986 (2012). [CrossRef]
  27. Z. Y. Gu and W. Ubachs, “Temperature-dependent bulk viscosity of nitrogen gas determined from spontaneous Rayleigh–Brillouin scattering,” Opt. Lett. 38, 1110–1112 (2013). [CrossRef]
  28. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University, 1991).
  29. H. Shimizu, K. Noguchi, and C. Y. She, “Atmospheric temperature measurement by a high spectral resolution LIDAR,” Appl. Opt. 25, 1460–1466 (1986). [CrossRef]
  30. K. Schorstein, E. S. Fry, and T. Walther, “Depth-resolved temperature measurements of water using the Brillouin LIDAR technique,” Appl. Phys. B 97, 931–934 (2009). [CrossRef]
  31. K. Liang, Y. Ma, Y. Yu, J. Huang, and H. Li, “Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth,” Opt. Eng. 51, 066002 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited