OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 117–126

Polarization and far-field diffraction patterns of total internal reflection corner cubes

Thomas W. Murphy, Jr. and Scott D. Goodrow  »View Author Affiliations


Applied Optics, Vol. 52, Issue 2, pp. 117-126 (2013)
http://dx.doi.org/10.1364/AO.52.000117


View Full Text Article

Enhanced HTML    Acrobat PDF (693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many corner cube prisms, or retroreflectors, employ total internal reflection (TIR) via uncoated rear surfaces. The different elliptical polarization states emerging from the six unique paths through the corner cube complicate the far-field diffraction pattern by introducing various phase delays between the six paths. In this paper, we present a computational framework to evaluate polarization through TIR corner cubes for arbitrary incidence angles and input polarization states, presenting example output for key normal-incidence conditions. We also describe a method to produce far-field diffraction patterns resulting from the polarization analysis, presenting representative images—broken into orthogonal polarizations—and characterizing key cases. Laboratory confirmation is also presented for both polarization states and far-field diffraction patterns.

© 2013 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(260.6970) Physical optics : Total internal reflection

ToC Category:
Physical Optics

History
Original Manuscript: September 5, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 23, 2012
Published: January 4, 2013

Citation
Thomas W. Murphy and Scott D. Goodrow, "Polarization and far-field diffraction patterns of total internal reflection corner cubes," Appl. Opt. 52, 117-126 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-2-117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Peck, “Polarization properties of corner reflectors and cavities,” J. Opt. Soc. Am. 52, 253–258 (1962). [CrossRef]
  2. J. Liu and R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553–1559 (1997). [CrossRef]
  3. R. R. Hodgson and R. A. Chipman, “Measurement of corner cube polarization,” Proc. SPIE 1317, 436–447(1990). [CrossRef]
  4. M. S. Scholl, “Ray trace through a corner-cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995). [CrossRef]
  5. R. F. Chang, D. G. Currie, C. O. Alley, and M. E. Pittman, “Far-field diffraction pattern for corner reflectors with complex reflection coefficients,” J. Opt. Soc. Am. 61, 431–438 (1971). [CrossRef]
  6. D. A. Arnold, “Method of calculating retroreflector-array transfer functions,” Special Report 382 (Smithsonian Astrophysical Observatory, Massachusetts, 1979).
  7. M. A. Sadovnikov and A. L. Sokolov, “Spatial polarization structure of radiation formed by a retroreflector with nonmetallized faces,” Opt. Spektrosk. 107, 213–218(2009). [CrossRef]
  8. A. L. Sokolov and V. V. Murashkin, “Diffraction polarization optical elements with radial symmetry,” Opt. Spectrosc. 111, 859–865 (2011). [CrossRef]
  9. T. W. Murphy, E. G. Adelberger, J. B. R. Battat, L. N. Carey, C. D. Hoyle, P. LeBlanc, E. L. Michelsen, K. Nordtvedt, A. E. Orin, J. D. Strasburg, C. W. Stubbs, H. E. Swanson, and E. Williams, “The apache point observatory lunar laser-ranging operation: instrument description and first detections,” Publ. Astron. Soc. Pac. 120, 20–37 (2008). [CrossRef]
  10. S. D. Goodrow and T. W. Murphy, “Effects of thermal gradients in total internal reflection corner cubes,” Appl. Opt.51, 8793–8799 (2012). [CrossRef]
  11. T. W. Murphy, E. G. Adelberger, J. B. R. Battat, C. D. Hoyle, R. J. McMillan, E. L. Michelsen, R. L. Samad, C. W. Stubbs, and H. E. Swanson, “Long-term degradation of optical devices on the Moon,” Icarus 208, 31–35 (2010). [CrossRef]
  12. http://physics.ucsd.edu/~tmurphy/papers/ccr-sim/ccr-sim.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited