OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 127–138

Signal processing of white-light interferometric low-finesse fiber-optic Fabry–Perot sensors

Cheng Ma and Anbo Wang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 127-138 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Signal processing for low-finesse fiber-optic Fabry–Perot sensors based on white-light interferometry is investigated. The problem is demonstrated as analogous to the parameter estimation of a noisy, real, discrete harmonic of finite length. The Cramer–Rao bounds for the estimators are given, and three algorithms are evaluated and proven to approach the bounds. A long-standing problem with these types of sensors is the unpredictable jumps in the phase estimation. Emphasis is made on the property and mechanism of the “total phase” estimator in reducing the estimation error, and a varying phase term in the total phase is identified to be responsible for the unwanted demodulation jumps. The theories are verified by simulation and experiment. A solution to reducing the probability of jump is demonstrated.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 25, 2012
Revised Manuscript: November 27, 2012
Manuscript Accepted: November 27, 2012
Published: January 4, 2013

Cheng Ma and Anbo Wang, "Signal processing of white-light interferometric low-finesse fiber-optic Fabry–Perot sensors," Appl. Opt. 52, 127-138 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Bhatia, K. A. Murphy, R. O. Claus, T. A. Tran, and J. A. Greene, “Recent developments in optical-fiber-based extrinsic Fabry–Perot interferometric strain sensing technology,” Smart Mater. Struct. 4, 246–251 (1995). [CrossRef]
  2. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994). [CrossRef]
  3. T. Liu, M. Wu, Y. Rao, D. A. Jackson, and G. F. Fernando, “A multiplexed optical fibre-based extrinsic Fabry–Perot sensor system for in-situ strain monitoring in composites,” Smart Mater. Struct. 7, 550–556 (1998). [CrossRef]
  4. B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, “Fiber Fabry–Perot sensors for detection of partial discharges in power transformers,” Appl. Opt. 42, 3241–3250, 2003. [CrossRef]
  5. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536–538 (2008). [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  7. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005). [CrossRef]
  8. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991). [CrossRef]
  9. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993). [CrossRef]
  10. T. Liu and G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000). [CrossRef]
  11. S. Taplin, A. G. Podoleanu, D. J. Webb, and D. A. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett. 29, 896–897 (1993). [CrossRef]
  12. C. Boulet, M. Hathaway, and D. A. Jackson, “Fiber-optic-based absolute displacement sensors at 1500 nm by means of a variant of channeled spectrum signal recovery,” Opt. Lett. 29, 1602–1604 (2004). [CrossRef]
  13. S. M. Musa, “Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system,” Ph.D. dissertation (Virginia Tech, 1997).
  14. A. Majumdar and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47, 2821–2828 (2008). [CrossRef]
  15. T. Liu, D. Brooks, A. R. Martin, R. A. Badcock, and G. F. Fernando, “Design, fabrication, and evaluation of an optical fiber sensor for tensile and compressive strain measurements via the use of white light interferometry,” Proc. SPIE 2718, 408–416 (1996). [CrossRef]
  16. Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry–Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47, 925–932 (2008). [CrossRef]
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  18. J. Yi, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20, 539–541 (2008). [CrossRef]
  19. V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, “Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements,” Electron. Lett. 32, 247–249 (1996). [CrossRef]
  20. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003). [CrossRef]
  21. R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, and L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998). [CrossRef]
  22. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44, 5206–5214 (2005). [CrossRef]
  23. H. Huang, “Data interrogation for Fabry–Perot white light interferometry,” Proc. SPIE 6174, 617419 (2006). [CrossRef]
  24. X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11, 1602–1606 (2011). [CrossRef]
  25. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 29, 1736–1738 (2004). [CrossRef]
  26. S. M. Kay, Modern Spectral Estimation: Theory and Application (Prentice-Hall, 1999).
  27. Y. J. Rao, X. J. Wang, T. Zhu, and C. X. Zhou, “Demodulation algorithm for spatial-frequency-division-multiplexed fiber-optic Fizeau strain sensor networks,” Opt. Lett. 31, 700–702 (2006). [CrossRef]
  28. H. C. So, Y. T. Chan, Q. Ma, and P. C. Ching, “Comparison of various periodograms for sinusoid detection and frequency estimation,” IEEE Trans. Aerosp. Electron. Syst. 35, 945–952 (1999). [CrossRef]
  29. C. Ma, E. Lally, and A. Wang, “Toward eliminating signal demodulation jumps in optical fiber intrinsic Fabry–Perot interferometric sensors,” J. Lightwave Technol. 29, 1913–1919 (2011). [CrossRef]
  30. D. Rife and R. Boorstyn, “Single tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20, 591–598 (1974). [CrossRef]
  31. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978). [CrossRef]
  32. H. C. So, C. Kit Wing, Y. T. Chan, and K. C. Ho, “Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses,” IEEE Trans. Signal Process. 53, 2290–2305 (2005). [CrossRef]
  33. M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry–Perot interferometric sensor systems,” Opt. Lett. 31, 1202–1204 (2006). [CrossRef]
  34. C. Ma, B. Dong, J. Gong, and A. Wang, “Decoding the spectra of low-finesse extrinsic optical fiber Fabry–Perot interferometers,” Opt. Express 19, 23727–23742 (2011). [CrossRef]
  35. C. Ma and A. Wang, “Multimode excitation-induced phase shifts in intrinsic Fabry–Perot interferometric fiber sensor spectra,” Appl. Opt. 49, 4836–4845 (2010). [CrossRef]
  36. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994). [CrossRef]
  37. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited