OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 241–247

Continuously variable, electrically addressed beam splitter based on vanadium dioxide

Guy-Germain Allogho, Habib Hamam, Gisia Beydaghyan, Sofiane Alloul, and Alain Haché  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 241-247 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vanadium dioxide (VO2) is used to implement an electrically addressable beam splitter with continuously variable splitting ratios. The electrical control of temperature in a thin VO2 layer is used to vary its transmission/reflection behavior. The technique is characterized for various incidence angles, s- and p-polarizations, and the wavelength range of 400–2000 nm. Splitting ratios continuously tunable over four orders of magnitude are reported.

© 2013 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.6840) Materials : Thermo-optical materials
(230.1360) Optical devices : Beam splitters
(310.6860) Thin films : Thin films, optical properties
(130.4815) Integrated optics : Optical switching devices

ToC Category:

Original Manuscript: July 30, 2012
Manuscript Accepted: November 16, 2012
Published: January 10, 2013

Guy-Germain Allogho, Habib Hamam, Gisia Beydaghyan, Sofiane Alloul, and Alain Haché, "Continuously variable, electrically addressed beam splitter based on vanadium dioxide," Appl. Opt. 52, 241-247 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Mendlovic, I. Ouzieli, I. Kiryuschev, and E. Marom, “Two-dimensional wavelet transform achieved by computer-generated multireference matched filter and Dammann grating,” Appl. Opt. 34, 8213–8219 (1995). [CrossRef]
  2. M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge University, 1995), pp. 295–327.
  3. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, “Compact magnetooptical disk for coded data storage,” Appl. Opt. 25, 483–489 (1986). [CrossRef]
  4. R. K. Kostuk, T.-J. Kim, G. Campbell, and C. W. Han, “Diffractive-optic polarization-sensing element for magneto-optic storage heads,” Opt. Lett. 19, 1257–1259 (1994). [CrossRef]
  5. C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001). [CrossRef]
  6. L. B. Wolff, “Polarization camera for computer vision with a beam splitter,” J. Opt. Soc. Am. A 11, 2935–2945(1994). [CrossRef]
  7. J. N. Mait and K.-H. Brenner, “Optical symbolic substitution: system design using phase-only holograms,” Appl. Opt. 27, 1692–1700 (1988). [CrossRef]
  8. Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996). [CrossRef]
  9. Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004). [CrossRef]
  10. R. Borghi, G. Cincotti, and M. Santarsiero, “Diffractive variable beam splitter: optimal design,” J. Opt. Soc. Am. A 17, 63–67 (2000). [CrossRef]
  11. M. M. Broer, C. G. Levey, E. Strauss, and W. M. Yen, “Variable birefringent beam splitter,” Appl. Opt. 20, 1011–1014(1981). [CrossRef]
  12. N. J. Harrick, “A continuously variable optical beam splitter and intensity controller,” Appl. Opt. 2, 1203–1204 (1963). [CrossRef]
  13. N. F. Mott, “Metal-insulator transition,” Rev. Mod. Phys. 40, 677–683 (1968). [CrossRef]
  14. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975). [CrossRef]
  15. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959). [CrossRef]
  16. J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007). [CrossRef]
  17. V. Eyert, “The metal-insulator transitions of VO2: a band theoretical approach,” Ann. Phys. 11, 650–702 (2002). [CrossRef]
  18. R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008). [CrossRef]
  19. C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008). [CrossRef]
  20. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092–6095 (2007). [CrossRef]
  21. L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006). [CrossRef]
  22. Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999). [CrossRef]
  23. J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3, 490–500 (1971). [CrossRef]
  24. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited