OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 24 — Aug. 20, 2013
  • pp: 6051–6062

Comprehensive polarimetric analysis of Spectralon white reflectance standard in a wide visible range

J. M. Sanz, C. Extremiana, and J. M. Saiz  »View Author Affiliations

Applied Optics, Vol. 52, Issue 24, pp. 6051-6062 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Since polarimetry has extended its use for the study of scattering from surfaces and tissues, Spectralon, a white reflectance standard, is acquiring the role of a polarimetric standard. Both the behavior of Spectralon as a Lambertian surface and its performance as a perfect depolarizer are analyzed in detail. The accuracy of our dynamic polarimeter, together with the polar decomposition to describe the Mueller matrix (MM) depolarizing action, combine to produce a powerful tool for the proper analysis of this scattering surface. Results allowed us to revisit, for confirmation or revision, the role of some MM elements, as described in the bibliography. The conditions under which it can be considered a good Lambertian surface are specified in terms of incidence and scattering angle and verified over a large wavelength range.

© 2013 Optical Society of America

OCIS Codes
(290.1483) Scattering : BSDF, BRDF, and BTDF
(290.5855) Scattering : Scattering, polarization
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:

Original Manuscript: April 12, 2013
Manuscript Accepted: July 25, 2013
Published: August 19, 2013

J. M. Sanz, C. Extremiana, and J. M. Saiz, "Comprehensive polarimetric analysis of Spectralon white reflectance standard in a wide visible range," Appl. Opt. 52, 6051-6062 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Labsphere Inc., “A guide to diffuse reflectance coatings and materials,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .
  2. V. R. Weidner and J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981). [CrossRef]
  3. K. J. Voss and D. Zhang, “Bidirectional reflectance of dry and submerged Labsphere Spectralon plaque,” Appl. Opt. 45, 7924–7927 (2006). [CrossRef]
  4. G. T. Georgiev and J. J. Butler, “The effect of speckle on BRDF measurements,” Proc. SPIE 5882, 588203 (2005). [CrossRef]
  5. B. T. McGuckin, D. A. Haner, R. T. Menzies, C. Esproles, and A. M. Brothers, “Directional reflectance characterization facility and measurement methodology,” Appl. Opt. 35, 4827–4834 (1996). [CrossRef]
  6. S. Kaasalainen, E. Ahokas, J. Hyyppä, and J. Suomalainen, “Study of surface brightness from backscattered intensity: calibration of laser data,” IEEE Geosci. Remote Sens. Lett. 2, 255–259 (2005). [CrossRef]
  7. D. A. Haner, B. T. McGuckin, and C. J. Bruegge, “Polarization characteristics of Spectralon illuminated by coherent light,” Appl. Opt. 38, 6350–6356 (1999). [CrossRef]
  8. A. A. Bhandari, B. Hamre, Ø. Frette, L. Zhao, J. J. Stamnes, and M. Kildemo, “Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and planepolarized light,” Appl. Opt. 50, 2431–2442 (2011). [CrossRef]
  9. D. H. Goldstein, D. B. Chenault, and J. L. Pezzaniti, “Polarimetric characterization of Spectralon,” Proc. SPIE 3754, 126–136 (1999). [CrossRef]
  10. D. H. Goldstein and D. B. Chenault, “Spectropolarimetric reflectometer,” Opt. Eng. 41, 1013–1020 (2002). [CrossRef]
  11. T. A. Germer and H. J. Patrick, “Mueller matrix bidirectional reflectance distribution function measurements and modeling of diffuse reflectance standards,” Proc. SPIE 8160, 81600D (2011). [CrossRef]
  12. Ø. Svensen, M. Kildemo, J. Maria, J. J. Stamnes, and Ø. Frette, “Mueller matrix measurements and modeling pertaining to Spectralon white reflectance standards,” Opt. Express 20, 15045–15053 (2012). [CrossRef]
  13. M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, and P. K. Gupta, “Polar decomposition of 3×3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14, 9324–9337 (2006). [CrossRef]
  14. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038–3045 (2007). [CrossRef]
  15. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt. 48, 2625–2631 (2009). [CrossRef]
  16. C. Collet, J. Zallat, and Y. Takakura, “Clustering of Mueller matrix images for skeletonized structure detection,” Opt. Express 12, 1271–1280 (2004).
  17. M. Smith, “Polarization metrology moves beyond home-brewed solutions,” Laser Focus World 40, 123–129 (2004).
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  19. S. N. Savenkov, L. T. Mishchenko, R. S. Muttiah, Y. A. Oberemok, and I. A. Mishchenko, “Mueller polarimetry of virus-infected and healthy wheat under field and microgravity conditions,” J. Quant. Spectrosc. Radiat. Transfer 88, 327–343 (2004). [CrossRef]
  20. M. Foldyna, E. García-Caurel, R. Ossikovski, A. D. Martino, and J. Gil, “Retrieval of a non-depolarizing component of experimentally determined depolarizing Mueller matrices,” Opt. Express 17, 12794–12806 (2009). [CrossRef]
  21. J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Polar decomposition of the Mueller matrix: ellipsometric rule-of-thumb for square-profile surface structure recognition,” Appl. Opt. 50, 3781–3788 (2011). [CrossRef]
  22. J. J. Gil and E. Bernabeu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar pecomposition of its Mueller matrix,” Optik 76, 67–71 (1987).
  23. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106 (1996). [CrossRef]
  24. M. H. Smith, “Optimization of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt. 41, 2488–2493 (2002). [CrossRef]
  25. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148 (1978). [CrossRef]
  26. S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).
  27. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  28. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007). [CrossRef]
  29. R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition” J. Opt. Soc. Am. A 26, 1109–1118 (2009). [CrossRef]
  30. J. M. Sanz, P. Albella, F. Moreno, J. M. Saiz, and F. González, “Application of the polar decomposition to light scattering particle systems,” J. Quant. Spectrosc. Radiat. Transfer 110, 1369–1374 (2009). [CrossRef]
  31. J. J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986). [CrossRef]
  32. J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A 17, 328–334 (2000). [CrossRef]
  33. A. Hope and K. O. Hauer, “Three-dimensional appearance characterization of diffuse standard reflection materials,” Metrologia 47, 295–304 (2010). [CrossRef]
  34. A. M. Rabal, A. Ferrero, J. Campos, J. L. Fontecha, A. Pons, A. M. Rubiño, and A. Corróns, “Automatic gonio-spectrophotometer for the absolute measurement of the spectral BRDF at in- out-of-plane and retroreflection geometries,” Metrologia 49, 213–223 (2012). [CrossRef]
  35. OSA, Handbook of Optics, Vol. 1, Chap. 14–16 (McGraw-Hill, 1994).
  36. D. Rod White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Opt. 37, 3450–3454 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited