OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 26 — Sep. 10, 2013
  • pp: 6579–6588

Evaluation of subsurface damage by light scattering techniques

Marcus Trost, Tobias Herffurth, David Schmitz, Sven Schröder, Angela Duparré, and Andreas Tünnermann  »View Author Affiliations


Applied Optics, Vol. 52, Issue 26, pp. 6579-6588 (2013)
http://dx.doi.org/10.1364/AO.52.006579


View Full Text Article

Enhanced HTML    Acrobat PDF (1147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Subsurface damage (SSD) in optical components is almost unavoidably caused by mechanical forces involved during grinding and polishing and can be a limiting factor, in particular for applications that require high laser powers or an extreme material strength. In this paper, we report on the characterization of SSD in ground and polished optical surfaces, using different light scattering measurement techniques in the visible and extreme ultraviolet spectral ranges. The materials investigated include fused silica, borosilicate glass, and calcium fluoride. The scattering results are directly linked to classical destructive SSD characterization techniques, based on white light interferometry, optical microscopy, and atomic force microscopy of the substrate topography and cross sections obtained after etching in hydrofluoric acid and fracturing.

© 2013 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(160.4670) Materials : Optical materials
(290.0290) Scattering : Scattering

ToC Category:
Scattering

History
Original Manuscript: May 28, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 17, 2013
Published: September 9, 2013

Citation
Marcus Trost, Tobias Herffurth, David Schmitz, Sven Schröder, Angela Duparré, and Andreas Tünnermann, "Evaluation of subsurface damage by light scattering techniques," Appl. Opt. 52, 6579-6588 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-26-6579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser-induced surface damage,” Proc. SPIE 5273, 264–272 (2004). [CrossRef]
  2. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006). [CrossRef]
  3. J. Steinert, S. Gliech, A. Wuttig, and A. Duparré, “Advanced methods for surface and subsurface defect characterization of optical components,” Proc. SPIE 4099, 290–298 (2000). [CrossRef]
  4. T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012). [CrossRef]
  5. J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011). [CrossRef]
  6. T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994). [CrossRef]
  7. J. A. Menapace, P.-J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, “MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique,” Proc. SPIE 5991, 599102 (2005). [CrossRef]
  8. X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans, and D. D. Walker, “Subsurface damage in precision ground ULE® and Zerodur® surfaces,” Opt. Express 15, 12197–12205 (2007). [CrossRef]
  9. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005). [CrossRef]
  10. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77, 3277–3280 (1994). [CrossRef]
  11. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17, 20448–20456 (2009). [CrossRef]
  12. L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009). [CrossRef]
  13. J. C. Lambropoulos, S. D. Jacobs, B. Gillman, F. Yang, and J. Ruckman, “Subsurface damage in microgrinding optical glasses,” LLE Rev. 73, 45–49 (1997).
  14. J. Wang, Y. Li, J. Han, Q. Xu, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).
  15. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17, 3543–3554 (2009). [CrossRef]
  16. C. F. Kranenberg and K. C. Jungling, “Subsurface damage identification in optically transparent materials using a nondestructive method,” Appl. Opt. 33, 4248–4253 (1994). [CrossRef]
  17. D. A. Lucca, C. J. Wetteland, A. Misra, M. J. Klopfstein, M. Nastasi, C. J. Maggiore, and J. R. Tesmer, “Assessment of subsurface damage in polished II–VI semiconductors by ion channeling,” Nucl. Instrum. Methods Phys. Res. B 219–220, 611–617 (2004).
  18. J. M. Bennett and R. J. King, “Effect of polishing technique on the roughness and residual surface film on fused quartz optical flats,” Appl. Opt. 9, 236–238 (1970). [CrossRef]
  19. J. Wang, R. L. Maier, and J. H. Bruning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
  20. T. A. Germer, “Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness,” Appl. Opt. 36, 8798–8805 (1997). [CrossRef]
  21. C. Amra, C. Deumie, and O. Gilbert, “Elimination of polarized light scattered by surface roughness or bulk heterogeneity,” Opt. Express 13, 10854–10864 (2005). [CrossRef]
  22. W. B. Williams, B. A. Mullany, W. C. Parker, P. J. Moyer, and M. H. Randles, “Using quantum dots to tag subsurface damage in lapped and polished glass samples,” Appl. Opt. 48, 5155–5163 (2009). [CrossRef]
  23. J. Wang and R. L. Maier, “Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique,” Appl. Opt. 45, 5621–5628 (2006). [CrossRef]
  24. R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41, 988–993 (2002). [CrossRef]
  25. J. C. Stover, Optical Scattering: Measurement and Analysis, 3rd ed. (SPIE, 2012).
  26. E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979). [CrossRef]
  27. J. M. Elson, “Theory of light scattering from a rough surface with an inhomogeneous dielectric permittivity,” Phys. Rev. B 30, 5460–5480 (1984). [CrossRef]
  28. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002). [CrossRef]
  29. K. Saito, H. Kakiuchida, and A. J. Ikushima, “Investigation of the origin of the Rayleigh scattering in SiO2 glass,” J. Non-Cryst. Solids 222, 329–334 (1997).
  30. S. Schröder, M. Kamprath, A. Duparré, A. Tünnermann, B. Kühn, and U. Klett, “Bulk scattering properties of synthetic fused silica at 193  nm,” Opt. Express 14, 10537–10549 (2006). [CrossRef]
  31. T. A. Germer and C. C. Asmail, “Polarization of light scattered by microrough surfaces and subsurface defects,” J. Opt. Soc. Am. A 16, 1326–1332 (1999). [CrossRef]
  32. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50, C164–C171 (2011). [CrossRef]
  33. S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012). [CrossRef]
  34. M. Trost, S. Schröder, C. C. Lin, A. Duparré, and A. Tünnermann, “Roughness characterization of EUV multilayer coatings and ultra-smooth surfaces by light scattering,” Proc. SPIE 8501, 85010F (2012). [CrossRef]
  35. S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010). [CrossRef]
  36. P. Ostojic and R. McPherson, “A review of indentation fracture theory: its development, principles and limitations,” Int. J. Fract. 33, 297–312 (1987). [CrossRef]
  37. “A guide to reflectance coatings and materials,” (Labsphere, Inc.), http://www.labsphere.com .
  38. S. Schröder, M. Trost, T. Feigl, J. E. Harvey, and A. Duparré, “Efficient specification and charaterization of surface roughness for extreme ultraviolet optics,” Proc. SPIE 7969, 79692C (2011). [CrossRef]
  39. Center of X-ray Optics, http://henke.lbl.gov/optical_constants/getdb2.html .
  40. T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52, 3279–3287 (2013). [CrossRef]
  41. M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Roughness characterization of large EUV mirror optics by laser light scattering,” Proc. SPIE 8169, 81690P (2011). [CrossRef]
  42. M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153 (2011). [CrossRef]
  43. C.-H. Kuo and M. Moghaddam, “Electromagnetic scattering from a buried cylinder in layered media with rough interfaces,” IEEE Trans. Antennas Propag. 54, 2392–2401 (2006). [CrossRef]
  44. M. A. Fiaz, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Scattering by a circular cylinder buried under a slightly rough surface: the cylindrical-wave approach,” IEEE Trans. Antennas Propag. 60, 2834–2842 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited