OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6868–6876

Method for primary design of superachromats

Antonín Mikš and Jiří Novák  »View Author Affiliations

Applied Optics, Vol. 52, Issue 28, pp. 6868-6876 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work deals with a method for primary optical design of superachromats, where chromatic aberration is corrected for several wavelengths. Equations for the calculation of optical power and curvature radii are described for aplanatic and nonaplanatic optical systems, which are composed of two or three thin lenses in contact. Results of the calculations are presented for chosen optical systems of superachromats with basic design parameters.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.3620) Geometric optics : Lens system design
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(080.2468) Geometric optics : First-order optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 12, 2013
Revised Manuscript: August 31, 2013
Manuscript Accepted: September 2, 2013
Published: September 24, 2013

Antonín Mikš and Jiří Novák, "Method for primary design of superachromats," Appl. Opt. 52, 6868-6876 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Herzberger, Modern Geometrical Optics (Interscience, 1958).
  2. H. Chretien, Calcul des Combinaisons Optiques (Masson, 1980).
  3. D. Argentieri, Ottica industriale (Hoepli, 1942).
  4. M. Born, E. Wolf, Principles of Optics (Oxford University, 1964).
  5. A. Mikš, Applied Optics (Czech Technical University, 2009).
  6. A. Mikš, J. Vondřich, “Method for design of superachromatic systems I,” Fine Mech. Opt. 10, 79–84 (1966).
  7. A. Mikš, J. Vondřich, “Auswahl der glaser fur ein verkittetes duplet,” Optik 28, 321–327 (1968/69).
  8. M. Herzberger, H. Jenkins, “Color correction in optical systems and types of glass,” J. Opt. Soc. Am. 39, 984–986 (1949). [CrossRef]
  9. M. Herzberger, “Colour correction in optical systems and a new dispersion formula,” Opt. Acta 6, 197–215 (1959). [CrossRef]
  10. M. Herzberger, N. R. McClure, “The design of superachromatic lenses,” Appl. Opt. 2, 553–560 (1963). [CrossRef]
  11. M. Herzberger, “Tables of superachromatic glasstriplets and their color correction,” Optik 35, 1–8 (1972).
  12. M. Herzberger, H. Pulvermacher, “Die farbfehlerkorrektion von multipletts,” Opt. Acta 17, 349–361 (1970). [CrossRef]
  13. R. E. Stephens, “Four-color achromats and superchromats,” J. Opt. Soc. Am. 50, 1016–1019 (1960). [CrossRef]
  14. N. v. d. W. Lessing, “Selection of optical glasses in superachromats,” Appl. Opt. 9, 1665–1668 (1970). [CrossRef]
  15. N. v. d. W. Lessing, “Further considerations on the section of optical glasses in superachromats,” Appl. Opt. 9, 2390–2391 (1970). [CrossRef]
  16. P. N. Robb, “Selection of optical glasses,” Proc. SPIE 554, 60–75 (1985). [CrossRef]
  17. J. L. Rayces, M. Rosete-Aguilar, “Selection of glasses for achromatic doublets with reduced secondary spectrum. I. Tolerance conditions for secondary spectrum, spherochromatism, and fifth-order spherical aberration,” Appl. Opt. 40, 5663–5676 (2001). [CrossRef]
  18. H. Pulvermacher, “Theorie der restspektrum von simpletts,” Optik 30, 297–313 (1969).
  19. B. F. Carneiro de Albuquerque, J. Sasian, F. L. de Sousa, A. S. Montes, “Method of glass selection for color correction in optical system design,” Opt. Express 20, 13592–13611 (2012). [CrossRef]
  20. T. N. Khatsevich, V. L. Parko, “Algorithm for calculating objective—achromats with separated components for telescopic and collimation systems,” J. Opt. Technol. 79, 395–398 (2012). [CrossRef]
  21. R. D. Sigler, “Glass selection for airspaced apochromats using the Buchdahl dispersion equation,” Appl. Opt. 25, 4311–4320 (1986). [CrossRef]
  22. R. I. Mercado, “Design of apochromats and superachromats,” Proc. SPIE 1, 270–296 (1992).
  23. H. H. Hopkins, V. V. Rao, “The systematic design of two component objectives,” Opt. Acta 17, 497–514 (1970). [CrossRef]
  24. M. I. Khan, “Cemented triplets: a method for rapid design,” Opt. Acta 31, 873–883 (1984). [CrossRef]
  25. C. H. Chen, S. G. Shiue, “Method of solving a triplet comprising a singlet and a cemented doublet with given primary aberrations,” J. Mod. Opt. 45, 2063–2084 (1998).
  26. A. Szulc, “Improved solution for the cemented doublet,” Appl. Opt. 35, 3548–3558 (1996). [CrossRef]
  27. M. H. Sussman, “Cemented aplanatic doublets,” J. Opt. Soc. Am. 52, 1185–1186 (1962). [CrossRef]
  28. S. Banerjee, L. Hazra, “Experiments with a genetic algorithm for structural design of cemented doublets with prespecified aberration targets,” Appl. Opt. 40, 6265–6273 (2001). [CrossRef]
  29. M. I. Khan, J. Macdonald, “Cemented doublets, a method for rapid design,” Opt. Acta 29, 807–822 (1982). [CrossRef]
  30. A. Mikš, J. Novák, “Design of a double-sided telecentric zoom lens,” Appl. Opt. 51, 5928–5935 (2012). [CrossRef]
  31. M. Berek, Grundlagen der Praktischen Optik (Walter de Gruyter, 1970).
  32. B. E. Hansen, “Econometrics,” Draft Textbook Website: http://www.ssc.wisc.edu/~bhansen/econometrics/ (2013). Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited