OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6910–6918

Imaging properties of three refractive axicons

Andrew Saikaley, Brahim Chebbi, and Ilya Golub  »View Author Affiliations

Applied Optics, Vol. 52, Issue 28, pp. 6910-6918 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The imaging properties of three types of refractive axicons are examined by using them in an imaging system. A linear axicon, a logarithmic axicon, and a Fresnel axicon are characterized by determining their point spread functions (PSFs) experimentally and by numerical simulation. The PSFs, which vary along the depth of field for the cases considered in the present investigation, are used in digital filters to denoise the images. A comparison of the imaging performance of these three optical elements is presented.

© 2013 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(220.3630) Optical design and fabrication : Lenses

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 1, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 26, 2013
Published: September 26, 2013

Andrew Saikaley, Brahim Chebbi, and Ilya Golub, "Imaging properties of three refractive axicons," Appl. Opt. 52, 6910-6918 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ojeda-Castaneda, E. Tepichin, and A. Diaz, “Arbitrarily high focal depth with a quasi-optimum real and positive transmittance apodizer,” Appl. Opt. 28, 2666–2670 (1989). [CrossRef]
  2. E. Dowski and W. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef]
  3. G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, “Diffractive elements for imaging with extended depth of focus,” Opt. Eng. 44, 058001 (2005). [CrossRef]
  4. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15, 9184–9193 (2007). [CrossRef]
  5. J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16, 18371–18378 (2008). [CrossRef]
  6. G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366–368 (2008). [CrossRef]
  7. Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt. 56, 1304–1308 (2009). [CrossRef]
  8. D. Brousseau, J. Drapeau, M. Piché, and E. F. Borra, “Generation of Bessel beams using a magnetic liquid deformable mirror,” Appl. Opt. 50, 4005–4010 (2011). [CrossRef]
  9. S. K. Tiwari, S. R. Mishra, S. P. Ram, and H. S. Rawat, “Generation of a Bessel beam of variable spot size,” Appl. Opt. 51, 3718–3725 (2012). [CrossRef]
  10. K. Gourley, I. Golub, and B. Chebbi, “First experimental demonstration of a Fresnel axicon,” Proc. SPIE 7099, 70990D (2009). [CrossRef]
  11. K. Gourley, I. Golub, and B. Chebbi, “Demonstration of a Fresnel axicon,” Appl. Opt. 50, 303–306 (2011). [CrossRef]
  12. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett. 35, 2828–2830 (2010). [CrossRef]
  13. B. Chebbi, I. Golub, and K. Gourley, “Homogenization of on-axis intensity distribution produced by a Fresnel refractive axicon,” Opt. Commun. 285, 1636–1641 (2012). [CrossRef]
  14. A. Saikaley, I. Pak, I. Golub, and B. Chebbi, “Imaging with a fiberoptic bundle/axicon telescope system,” Proc. SPIE 7750, 775010 (2010). [CrossRef]
  15. A. Saikaley, S. Matoug, I. Golub, and B. Chebbi, “Imaging properties of different refractive axicons,” Proc. SPIE 8007, 80070Y (2011). [CrossRef]
  16. G. Roy and R. Tremblay, “Influence of the divergence of a laser beam on the axial intensity distribution of an axicon,” Opt. Commun. 34, 1–3 (1980). [CrossRef]
  17. B. Chebbi and I. Golub, School of Engineering, Laurentian University, Sudbury, ON, Canada, are preparing a manuscript called “More on the Bessel beam approximation for the radial intensity distribution of logarithmic axicons,” (to be submitted).
  18. J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  19. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef]
  20. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing using Matlab (Prentice-Hall, 2004).
  21. C. Snoeyink, “Imaging performance of Bessel beam microscopy,” Opt. Lett. 38, 2550–2553 (2013). [CrossRef]
  22. V. Kotlyar, A. Kovalev, S. Stafeev, and V. A. Soifer, “Diffraction of a Gaussian beam by a logarithmic axicon,” J. Opt. Soc. Am. A 28, 844–849 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited