OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6919–6930

Wide dynamic range homodyne interferometry method and its application for piezoactuator displacement measurements

José Henrique Galeti, Paula Lalucci Berton, Cláudio Kitano, Ricardo Tokio Higuti, Ronny Calixto Carbonari, and Emílio Carlos Nelli Silva  »View Author Affiliations

Applied Optics, Vol. 52, Issue 28, pp. 6919-6930 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiactuated piezoelectric flextensional actuators (MAPFAs) is a fast-growing technology in development, with a wide range of applications in precision mechanics and nanotechnology. In turn, optical interferometry is an adequate technique to measure nano/micro-displacements and to characterize these MAPFAs. In this work, an efficient method for homodyne phase detection, based on a well-known Bessel functions recurrence relation, is developed, providing practical applications with a high dynamic range. Fading and electronic noise are taken into account in the analysis. An important advantage of the method is that, for each measurement, only a limited number of frequencies in the magnitude spectrum of the photodetected signal are used, without the need to know the phase spectrum. The dynamic range for phase demodulation is from 0.2 to 100πrad (or 10 nm to 16 μm for displacement, using 632.8 nm wavelength). The upper range can be easily expanded by adapting the electronic system to the signal characteristics. By using this interferometric technique, a new XY nanopositioner MAPFA prototype is tested in terms of linearity, displacement frequency response, and coupling rate.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 9, 2013
Revised Manuscript: September 3, 2013
Manuscript Accepted: September 3, 2013
Published: September 26, 2013

José Henrique Galeti, Paula Lalucci Berton, Cláudio Kitano, Ricardo Tokio Higuti, Ronny Calixto Carbonari, and Emílio Carlos Nelli Silva, "Wide dynamic range homodyne interferometry method and its application for piezoactuator displacement measurements," Appl. Opt. 52, 6919-6930 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Devasia, E. Eleftheriou, and S. Moheimani, “A survey of control issues in nanopositioning,” IEEE Trans. Control Syst. Technol. 15, 802–823 (2007). [CrossRef]
  2. S. T. Smith and D. G. Chetwynd, “Foundations of ultraprecision mechanism design,” in Developments in Nanotechnology (Gordon and Breach Science, 1992), Vol. 2, pp. 95–180.
  3. R. C. Carbonari, E. C. N. Silva, and S. Nishiwaki, “Optimum placement of piezoelectric material in piezoactuator design,” Smart Mater. Struc. 16, 207–220 (2007).
  4. R. C. Carbonari, E. C. N. Silva, and S. Nishiwaki, “Design of piezoelectric multi-actuated microtools using topology optimization,” Smart Mater. Struc. 14, 1431–1447 (2005).
  5. Y. Tian, B. Shirinzadeh, and D. Zhang, “A flexure-based five-bar mechanism for micro/nano manipulation,” Sens. Actuators A 153, 96–104 (2009). [CrossRef]
  6. O. M. E. Rifai and K. Youcef-Toumi, “Trade-offs and performance limitations in mechatronic systems: a case study,” Ann. Rev. Cont. 28, 181–192 (2004).
  7. F. Claeyssen, R. Le Letty, F. Barillot, N. Lhermet, H. Fabbro, P. Guay, M. Yorck, and P. Bouchilloux, “Mechanisms based on piezoactuators,” Proc. SPIE 4332, 225–233 (2001).
  8. A. Eisinberg, A. Menciassi, S. Micera, D. Campolo, M. Carrozza, and P. Dario, “Pi force control of a microgripper for assembling biomedical microdevices,” IEE Proc. Circuits Devices Syst. 148, 348–352 (2001). [CrossRef]
  9. A. Menciassi, A. Eisinberg, M. Carrozza, and P. Dario, “Force sensing microinstrument for measuring tissue properties and pulse in microsurgery,” IEEE/ASME Trans. Mechatron. 8, 10–17 (2003). [CrossRef]
  10. E. Udd and W. B. J. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 2011).
  11. S. K. Sheem, T. G. Giallorenzi, and K. Koo, “Optical techniques to solve the signal fading problem in fiber interferometers,” Appl. Opt. 21, 689–693 (1982). [CrossRef]
  12. F. Xie, J. Ren, Z. Chen, and Q. Feng, “Vibration-displacement measurements with a highly stabilised optical fiber Michelson interferometer system,” Opt. Laser Technol. 42, 208–213 (2010). [CrossRef]
  13. S. Yokoyama, T. Yokoyama, and T. Araki, “High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer,” Meas. Sci. Technol. 16, 1841–1847 (2005). [CrossRef]
  14. S. Zhen, B. Chen, L. Yuan, M. Li, J. Liang, and B. Yu, “A novel interferometric vibration measurement sensor with quadrature detection based on 1/8 waveplate,” Opt. Laser Technol. 42, 362–365 (2010). [CrossRef]
  15. S. Kang, J. La, H. Yoon, and K. Park, “A synthetic heterodyne interferometer for small amplitude of vibration measurement,” Rev. Sci. Instrum. 79, 053106 (2008). [CrossRef]
  16. D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105 (2009). [CrossRef]
  17. S. Topcu, L. Chassagne, Y. Alayli, and P. Juncar, “Improving the accuracy of homodyne Michelson interferometers using polarisation state measurement techniques,” Opt. Commun. 247, 133–139 (2005). [CrossRef]
  18. V. S. Sudarshanam and K. Srinivasan, “Linear readout of dynamic phase change in a fiber-optic homodyne interferometer,” Opt. Lett. 14, 140–142 (1989). [CrossRef]
  19. V. Sudarshanam and R. Claus, “Generic J1…J4 method of optical phase detection,” J. Mod. Opt. 40, 483–492 (1993). [CrossRef]
  20. B. J. Pernick, “Self-consistent and direct reading laser homodyne measurement technique,” Appl. Opt. 12, 607–610 (1973). [CrossRef]
  21. H. A. Deferrari, R. A. Darby, and F. A. Andrews, “Vibrational displacement and mode-shape measurement by a laser interferometer,” J. Acoust. Soc. Am. 42, 982–990 (1967). [CrossRef]
  22. W. Jin, L. M. Zhang, D. Uttamchandani, and B. Cuishaw, “Modified J1…J4 method for linear readout of dynamic phase changes in a fiber-optic homodyne interferometer,” Appl. Opt. 30, 4496–4499 (1991). [CrossRef]
  23. R. C. Carbonari, G. Nader, S. Nishiwaki, and E. C. N. Silva, “Experimental and numerical characterization of multi-actuated piezoelectric device designs using topology optimization,” in Proc. SPIE 5764, 472–481 (2005).
  24. Y. Bitou, “High-accuracy displacement metrology and control using a dual Fabry–Perot cavity with an optical frequency comb generator,” Precis. Eng. 33, 187–193 (2009). [CrossRef]
  25. M. M. Brundavanam, N. K. Viswanathan, and D. N. Rao, “Nanodisplacement measurement using spectral shifts in a white-light interferometer,” Appl. Opt. 47, 6334–6339 (2008). [CrossRef]
  26. G. Heinzel, F. G. Cervanyes, A. F. G. Marin, J. Kullmann, W. Feng, and K. Danzmann, “Deep phase modulation interferometry,” Opt. Express 18, 19076–19086 (2010). [CrossRef]
  27. V. S. Sudarshanam, “Minimum detectable phase shift in spectrum-analysis techniques of optical interferometric vibration detection,” Appl. Opt. 31, 5997–6002 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited