OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 7002–7006

1.23  μm emission of Er/Pr-doped water-free fluorotellurite glasses

Huan Zhan, Aidong Zhang, Jianli He, Zhiguang Zhou, Jinhai Si, and Aoxiang Lin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 28, pp. 7002-7006 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To investigate the relatively unexplored 1.2 μm region, we identified a near-infrared emission at around 1.23 μm from Er3+/Pr3+-codoped water-free fluorotellurite glass with a composition of 60TeO2-30ZnF2-10NaF (TZNF60, mol. %). Under the condition of pumping with the 488 nm optical parametric oscillator (OPO) laser system, the directly measured lifetime (τf) at 1.23 μm in Er/Pr-codoped fluorotellurite glasses is about 111.2 μs, much longer than that of Er-doped fluorotellurite glass (80.1 μs). The stimulated emission cross section (σem) and quantum efficiency (η) for Er3+:S43/2I411/2 transition are greatly enhanced when appropriate Pr3+ ions are incorporated. These advances arise partially from the absence of the hydroxyl (OH) group and low phonon energy with the addition of a large amount of fluorides into oxide-based host glasses. With high quantum efficiency (56.2%) and a large stimulated cross section (4.03×1021cm2), Er3+/Pr3+-codoped TZNF60 glass is regarded as promising material for the development of optical amplification and laser operation at the relatively unexplored 1.2 μm region.

© 2013 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4480) Lasers and laser optics : Optical amplifiers
(160.5690) Materials : Rare-earth-doped materials

ToC Category:

Original Manuscript: June 21, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 5, 2013
Published: September 30, 2013

Huan Zhan, Aidong Zhang, Jianli He, Zhiguang Zhou, Jinhai Si, and Aoxiang Lin, "1.23  μm emission of Er/Pr-doped water-free fluorotellurite glasses," Appl. Opt. 52, 7002-7006 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Ohishi, “Ultra-broadband optical amplifiers for WDM,” Proc. SPIE 5246, 163–173 (2003). [CrossRef]
  2. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5, 815–824 (2002). [CrossRef]
  3. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006). [CrossRef]
  4. P. Laperle, A. Chandonnet, and R. Vallée, “Photoinduced absorption in thulium-doped ZBLAN fibers,” Opt. Lett. 20, 2484–2486 (1995). [CrossRef]
  5. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000). [CrossRef]
  6. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47  μm,” Appl. Opt. 39, 4979–4984 (2000). [CrossRef]
  7. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983). [CrossRef]
  8. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008). [CrossRef]
  9. Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006). [CrossRef]
  10. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20  μm wavelength region,” Opt. Express 18, 18805–18810 (2010). [CrossRef]
  11. E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008). [CrossRef]
  12. T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005). [CrossRef]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005). [CrossRef]
  14. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008). [CrossRef]
  15. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012). [CrossRef]
  16. B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011). [CrossRef]
  17. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, “Pr3+-doped fluoride fiber amplifier operating at 1.31  μm,” Opt. Lett. 16, 1747–1749 (1991). [CrossRef]
  18. Y. Fujimoto, H. Matsubara, and M. Nakatsuka, “New fluorescence from Bi-doped silica glass and its 1.3-μm emission with 0.8-μm excitation for fiber amplifier,” in Technical Digest of the CLEO/PR01 (IEEE, 2001), pp. 462–463.
  19. B. Zhou, L. Tao, Y. H. Tsang, W. Jin, and E. Y. B. Pun, “Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses,” Opt. Express 20, 12205–12211 (2012). [CrossRef]
  20. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36, 740–742 (2011). [CrossRef]
  21. H. Zhan, Z. Zhou, J. He, and A. Lin, “Intense 2.7  μm emission of Er3+-doped water-free fluorotellurite glass,” Opt. Lett. 37, 3408–3410 (2012). [CrossRef]
  22. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17, 16716–16721 (2009). [CrossRef]
  23. S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local structure works in glass,” J. Non-Cryst. Solids 259, 1–9 (1999). [CrossRef]
  24. D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005). [CrossRef]
  25. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7  μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011). [CrossRef]
  26. J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006). [CrossRef]
  27. S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited