OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 422–432

Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties

Muhammad Rizwan Saleem, Seppo Honkanen, and Jari Turunen  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 422-432 (2013)
http://dx.doi.org/10.1364/AO.52.000422


View Full Text Article

Enhanced HTML    Acrobat PDF (2670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate subwavelength titanium oxide (TiO2) resonance waveguide gratings (RWGs) and TiO2 thin films of thicknesses 200nm fabricated by atomic layer deposition (ALD), in both amorphous and crystalline phases on fused silica substrates. The TiO2 RWGs are fabricated by electron beam lithography, reactive ion etching, and ALD. The thin films and RWGs are characterized structurally by x-ray diffraction and scanning electron microscopy. The optical characterization of RWGs and optical constants of TiO2 films are studied by an ellipsometer. RWGs are designed for TE and TM modes in such a way that an overetch effect of the fused silica substrate can be investigated. Various RWG samples are prepared by gradually increasing the overetch depth and subsequently measuring the performance of the RWGs. A close agreement between the calculated and experimentally measured resonance wavelength spectral shifts is obtained; however, the magnitudes of the measured shifts are greater than calculated ones. A parallel study related to the measurement of the refractive indices and remeasuring the optical shifts of RWGs is carried out after a heat treatment of all the samples under study. The RWGs do not reveal significant spectral changes after the heat treatment; this is primarily due to a change in the surface chemistry by the redeposition of the reaction byproducts on the grating lines.

© 2013 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.4670) Materials : Optical materials
(230.7400) Optical devices : Waveguides, slab
(310.1860) Thin films : Deposition and fabrication
(310.2790) Thin films : Guided waves
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: September 17, 2012
Revised Manuscript: December 3, 2012
Manuscript Accepted: December 3, 2012
Published: January 16, 2013

Citation
Muhammad Rizwan Saleem, Seppo Honkanen, and Jari Turunen, "Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties," Appl. Opt. 52, 422-432 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett. 36, 2411–2413 (2011). [CrossRef]
  2. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30, 2488–2493 (2012). [CrossRef]
  3. T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005). [CrossRef]
  4. M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, “Towards athermal organic–inorganic guided mode resonance filters,” Opt. Express 19, 24241–24251 (2011). [CrossRef]
  5. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011). [CrossRef]
  6. M. R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, “Thermal properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 520, 5442–5446 (2012). [CrossRef]
  7. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989). [CrossRef]
  8. K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991). [CrossRef]
  9. R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys. 97, 121301 (2005). [CrossRef]
  10. M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012). [CrossRef]
  11. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef]
  12. T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22, 2799–2803 (2005). [CrossRef]
  13. M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20, 16974–16980 (2012). [CrossRef]
  14. J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006). [CrossRef]
  15. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  16. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  17. Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003). [CrossRef]
  18. E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005). [CrossRef]
  19. S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001). [CrossRef]
  20. K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited