OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 439–448

Adaptation of the Fourier–Hankel method for deflection tomographic reconstruction of axisymmetric field

Hassan Chehouani and Mahfoud El Fagrich  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 439-448 (2013)
http://dx.doi.org/10.1364/AO.52.000439


View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we describe an adaptation of Fourier–Hankel method to Abel inversion for the deflection tomographic reconstruction of axisymmetric temperature field. This technique is compared with existing methods to test the accuracy and error propagation using simulated Moiré stripes of natural convection flow above a heated horizontal disk in air. Simpson’s 1/3rd rule and one-point and two-point formulas are used in this comparison. The results showed that the proposed technique for Abel inversion is accurate and has the powerful capacity to control the smoothing degree of noise in the inversion process.

© 2013 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 2, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: December 11, 2012
Published: January 16, 2013

Citation
Hassan Chehouani and Mahfoud El Fagrich, "Adaptation of the Fourier–Hankel method for deflection tomographic reconstruction of axisymmetric field," Appl. Opt. 52, 439-448 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Hauf and U. Grigull, Optical Methods in Heat Transfer. Advances in Heat Transfer, 6th ed. (Academic, 1970).
  2. W. Merzkirch, Flow Visualization (Academic, 1974).
  3. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  4. M. Deutsch and I. Beniaminy, “Inversion of Abel’s integral equation for experimental data,” J. Appl. Phys. 54, 137–143 (1983). [CrossRef]
  5. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956–1959 (1988). [CrossRef]
  6. J. D. Posner and D. Dunn-Rankin, “Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms,” Appl. Opt. 42, 952–959 (2003). [CrossRef]
  7. M. El Fagrich and H. Chehouani, “A simple Abel inversion method of interferometric data for temperature measurement in axisymmetric medium,” Opt. Lasers Eng. 50, 336–344 (2012). [CrossRef]
  8. R. Álvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta B 57, 1665–1680 (2002). [CrossRef]
  9. S. Ma, H. Gao, G. Zhang, and L. Wu, “Abel inversion using Legendre wavelets expansion,” J. Quant. Spectrosc. Radiat. Transfer 107, 61–71 (2007). [CrossRef]
  10. S. Ma, H. Gao H, and L. Wu, “Modified Fourier–Hankel method based on analysis of errors in Abel inversion using Fourier transform techniques,” Appl. Opt. 47, 1350–1357 (2008). [CrossRef]
  11. S. Ma, H. Gao, L. Wu, and G. Zhang, “Abel inversion using Legendre polynomials approximations,” J. Quant. Spectrosc. Radiat. Transfer 109, 1745–1757 (2008). [CrossRef]
  12. K. A. Agrawal, B. W. Albers, and W. D. W. Griffin, “Abel inversion of deflectometric measurements in dynamic flows,” Appl. Opt. 38, 3394–3398 (1999). [CrossRef]
  13. P. S. Kolhe and A. K. Agrawal, “Abel inversion of deflectometric data: comparison of accuracy and noise propagation of existing techniques,” Appl. Opt. 48, 3894–3902 (2009). [CrossRef]
  14. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered back projection methods,” Appl. Opt. 31, 1146–1152 (1992). [CrossRef]
  15. O. H. Nestor and H. N. Olson, “Numerical methods for reducing line and surface probe data,” SIAM Rev. 2, 200–207 (1960). [CrossRef]
  16. L. M. Smith, D. R. Keefer, and S. I. Sudharsanan, “Abel inversion using transform techniques,” J. Quant. Spectrosc. Radiat. Transfer 39, 367–373 (1988). [CrossRef]
  17. G. C.-Y. Chan and G. M. Hieftje, “A LabVIEW program for determining confidence intervals of Abel-inverted radial emission profiles,” Spectrochim. Acta B 60, 1486–1501 (2005). [CrossRef]
  18. H. Chehouani and A. Elmotassadeq, “Simulation and visualization of the refraction effects in the thermal boundary layer near a heated horizontal down-facing disk,” Opt. Lasers Eng. 47, 477–483 (2009). [CrossRef]
  19. M. Takeda, H. Kobayashi, and K. Ina, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  20. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1922).
  21. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, 1965).
  22. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1996).
  23. W. Yu, D. Yun, and L. Wang, “Talbot and Fourier moiré deflectometry and its applications in engineering evaluation,” Opt. Lasers Eng. 25, 163–177 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited