OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 30 — Oct. 20, 2013
  • pp: 7256–7264

Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy

Jorge Fuentes-Fernández, Salvador Cuevas, Luis C. Álvarez-Nuñez, and Alan Watson  »View Author Affiliations


Applied Optics, Vol. 52, Issue 30, pp. 7256-7264 (2013)
http://dx.doi.org/10.1364/AO.52.007256


View Full Text Article

Enhanced HTML    Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Curvature wavefront sensors (WFSs), which obtain the wavefront aberrations from two defocused intensity images at each side of the pupil plane, have shown to be highly efficient for astronomical applications. We propose here an alternative defocusing mechanism for curvature sensors, based on an electrowetting-based variable focus liquid lens. Typically, the sampling rates of a WFS for active optics are of the order of 0.01 Hz, and the focus modulation can be done by simply moving the detector back and forth. On the other hand, adaptive optics may require speeds of up to several hundred hertz, and the modulation is then done by using a fast vibrating membrane mirror. We believe variable focus liquid lenses may be able to perform this focus modulation, reducing the overall size of the system and without the need of extra moving parts. We have done a full characterization of the Varioptic Arctic 416 liquid lens, and we have evaluated its potential performance in different curvature configurations.

© 2013 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(350.1260) Other areas of optics : Astronomical optics
(000.2658) General : Fundamental tests

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 1, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 10, 2013
Published: October 15, 2013

Citation
Jorge Fuentes-Fernández, Salvador Cuevas, Luis C. Álvarez-Nuñez, and Alan Watson, "Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy," Appl. Opt. 52, 7256-7264 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-30-7256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000). [CrossRef]
  2. F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. 17, R705–R774 (2005). [CrossRef]
  3. R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between. On electrowetting and its applications,” Soft Matt. 4, 38–45 (2008). [CrossRef]
  4. F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” Pure Appl. Opt. 8, S330–S336 (2006). [CrossRef]
  5. S. L. Lee and C. F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008). [CrossRef]
  6. H. Oku and M. Ishikawa, “High-speed liquid lens with 2-ms response and 80.3-nm root-mean-square wavefront error,” Proc. SPIE 7594, 759407 (2010). [CrossRef]
  7. X. Hu, S. Zhang, Y. Liu, C. Qu, L. Lu, X. Ma, X. Zhang, and Y. Deng, “Electrowetting based infrared lens using ionic liquids,” Appl. Phys. Lett. 99, 213505 (2011). [CrossRef]
  8. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  9. B. H. W. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005). [CrossRef]
  10. L. Li, C. Liu, H. R. Peng, and Q. H. Wang, “Optical switch based on electrowetting liquid lens,” J. Appl. Phys. 111, 103103 (2012). [CrossRef]
  11. J. W. Hardy, “Active optics-A new technology for the control of light,” Proc. IEEE 66, 651–697 (1978). [CrossRef]
  12. M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49, D17–D29 (2010). [CrossRef]
  13. S. Guisard, L. Noethe, and J. Spyromilio, “Performance of active optics at the VLT,” Proc. SPIE 4003, 154–164 (2000). [CrossRef]
  14. N. Takato, T. Usuda, and W. Tanaka, “Performance of active mirror support of Subaru telescope,” Proc. SPIE 4837, 675–679 (2003). [CrossRef]
  15. M. Boccas and T. Vucina, “Performance and upgrades of active optics on Gemini telescopes,” Proc. SPIE 6273, 627339 (2006). [CrossRef]
  16. J. Castro, C. D. Bello, L. Jochum, and N. Devaney, “Image quality and active optics for the Gran Telescopio Canarias,” Proc. SPIE 3352, 386–399 (1998). [CrossRef]
  17. N. Devaney, D. Bello, B. Femenia, J. Castro, A. V. Lopez, M. Reyes, and J. J. Fuensalida, “Preliminary design and plans for the GTC adaptive optics system,” Proc. SPIE 5490, 913–923 (2004). [CrossRef]
  18. J. C. Y. Chin, P. Wizinowich, R. Campbell, L. Chock, A. Cooper, E. James, J. Lyke, J. Mastromarino, O. Martin, D. Medeiros, D. Morrison, C. Neyman, S. Panteleev, T. Stalcup, P. Tucker, E. Wetherell, and M. van Dam, “Keck I laser guide star adaptive optics system,” Proc. SPIE 8447, 84474F (2012). [CrossRef]
  19. H. Kuntschner, P. Amico, J. Kolb, P. Y. Madec, R. Arsenault, M. Sarazin, and D. Summers, “Operational concept of the VLT’s adaptive optics facility and its instruments,” Proc. SPIE 8448, 844808 (2012). [CrossRef]
  20. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef]
  21. B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wave-front sensing,” J. Refractive Surg. 17, 573577 (2001).
  22. A. N. Kellerer and A. M. Kellerer, “Error propagation: a comparison of Shack–Hartmann and curvature sensors,” J. Opt. Soc. Am. A, 28, 801–807 (2011). [CrossRef]
  23. S. Cuevas, B. Sánchez, V. Bringas, C. Espejo, R. Flores, O. Chapa, G. Lara, A. Chavoya, G. Anguiano, S. Arciniega, A. Dorantes, J. L. Gonzalez, J. M. Montoya, R. Toral, H. Hernández, R. Nava, N. Devaney, J. Castro, L. Cavaller, A. Farah, J. Godoy, F. Cobos, C. Tejada, and F. Garfias, “Site acceptance of the commissioning instrument for the Gran Telescopio Canarias,” Proc. SPIE 6267, 62670X (2006). [CrossRef]
  24. O. Guyon, C. Blain, H. Tamaki, Y. Hayano, M. Hattori, and M. Watanabe, “Improving the sensitivity of astronomical curvature wavefront sensor using dual-stroke curvature,” Publ. Astron. Soc. Pac. 120, 655–664 (2008). [CrossRef]
  25. S. Cuevas, “AO curvature system for segmented primary telescopes,” Astron. Soc. Pac. Conf. 266, 568–576 (2002).
  26. J. M. Beckers, “Increasing the size of the isoplanatic patch size with multiconjugate adaptive optics,” in Proceedings of ESO Conference on Very Large Telescopes and Their Instrumentation, M.-H. Hulrich, ed. (European Southern Observatory, 1988), pp. 693–703.
  27. R. Avila, E. Carrasco, F. Ibanez, J. Vernin, J.-L. Prieur, and D. X. Cruz, “Generalized SCIDAR measurements at San Pedro Martir. II. Wind profile statistics,” Publ. Astron. Soc. Pac. 118, 503–515 (2006). [CrossRef]
  28. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited