OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7419–7434

Huygens–Feynman–Fresnel principle as the basis of applied optics

Andrey V. Gitin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 31, pp. 7419-7434 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (684 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The main relationships of wave optics are derived from a combination of the Huygens–Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics

ToC Category:
Physical Optics

Original Manuscript: July 8, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 19, 2013
Published: October 21, 2013

Andrey V. Gitin, "Huygens–Feynman–Fresnel principle as the basis of applied optics," Appl. Opt. 52, 7419-7434 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Leonhard Euler,” http://en.wikiquote.org/wiki/Leonhard_Euler .
  2. R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod. Phys. 20, 367–387 (1948). [CrossRef]
  3. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965).
  4. R. J. Black and A. Ankiewicz, “Fiber-optic analogies with mechanics,” Am. J. Phys. 53, 554–563 (1985). [CrossRef]
  5. R. P. Feynman, QED: The Strange Theory of Light and Matter (Princeton University, 1985).
  6. G. Eichmann, “Quasi-geometric optics of media with inhomogeneous index of refraction,” J. Opt. Soc. Am. A 61, 161–168 (1971). [CrossRef]
  7. A. V. Gitin, “Using continuous Feynman integrals in the mathematical apparatus of geometrical and wave optics. A complex approach,” J. Opt. Technol. 64, 729–735 (1997).
  8. A. V. Gitin, “Mathematical fundamentals of modern linear optics,” Int. J. Antennas Propag. 2012, 273107 (2012). [CrossRef]
  9. “Huygens–Fresnel Principle,” http://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle .
  10. A. Walther, “Systematic approach to the teaching of lens theory,” Am. J. Phys. 35, 808–816 (1967). [CrossRef]
  11. A. Walther, “Lenses, wave optics, and eikonal functions,” J. Opt. Soc. Am. 59, 1325–1331 (1969). [CrossRef]
  12. A. Walther, The Ray and Wave Theory of Lenses (Cambridge University, 1995).
  13. I. L. Sakin, Engineering Optics (Mashinostroenie, 1976, in Russian).
  14. A. V. Gitin, “Radiometry as a section of optical system theory,” Opt. Spectrosc. 63, 106–109 (1987).
  15. A. V. Gitin, “The dirac bra-ket in radiometry of quasi-homogeneous sources,” Appl. Opt. 50, 6073–6083 (2011). [CrossRef]
  16. A. V. Gitin, “Radiometry of optical systems with quasi-homogeneous sources: a linear systems approach,” Optik 122, 1713–1718 (2011). [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  18. V. A. Zverev, Radiooptics (Soviet Radio, 1975, in Russian).
  19. O. N. Litvinenko, Fundaments of Radio Optics (Technics, 1974, in Russian).
  20. V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics (D. Reidel, 1981).
  21. M. V. Fedoryuk, The Method of Steepest Descent (Nauka, 1977, in Russian).
  22. Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, 1990).
  23. Y. A. Kravtsov and Y. I. Orlov, “Boundaries of geometrical optics applicability and related problems,” Radio Sci. 16, 975–978 (1981). [CrossRef]
  24. C. R. Giuliano, “Applications of optical phase conjugation,” Phys. Today 34(4), 27–35 (1981). [CrossRef]
  25. A. Yariv, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978). [CrossRef]
  26. C. Morette, “On the definition and approximation of Feynman’s path integrals,” Phys. Rev. 81, 848–852 (1951). [CrossRef]
  27. A. V. Gitin, “Legendre transformations in Hamiltonian optics,” J. Eur. Opt. Soc. Rapid Publ. 5, 10022 (2010). [CrossRef]
  28. R. K. Luneburg, Mathematical Theory of Optics (University of California, 1964).
  29. M. Born and E. Wolf, Principles of Optics (Pergamon, 1965).
  30. V. Guillemin and S. Sternberg, Geometric Asymptotics (American Mathematical Society, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited