OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7449–7461

Probability density functions of power-in-bucket and power-in-fiber for an infrared laser beam propagating in the maritime environment

Charles Nelson, Svetlana Avramov-Zamurovic, Olga Korotkova, Reza Malek-Madani, Raymond Sova, and Frederic Davidson  »View Author Affiliations


Applied Optics, Vol. 52, Issue 31, pp. 7449-7461 (2013)
http://dx.doi.org/10.1364/AO.52.007449


View Full Text Article

Enhanced HTML    Acrobat PDF (2168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Irradiance fluctuations of an infrared laser beam from a shore-to-ship data link ranging from 5.1 to 17.8 km are compared to lognormal (LN), gamma–gamma (GG) with aperture averaging, and gamma-Laguerre (GL) distributions. From our data analysis, the LN and GG probability density function (PDF) models were generally in good agreement in near-weak to moderate fluctuations. This was also true in moderate to strong fluctuations when the spatial coherence radius was smaller than the detector aperture size, with the exception of the 2.54 cm power-in-bucket (PIB) where the LN PDF model fit best. For moderate to strong fluctuations, the GG PDF model tended to outperform the LN PDF model when the spatial coherence radius was greater than the detector aperture size. Additionally, the GL PDF model had the best or next to best overall fit in all cases with the exception of the 2.54 cm PIB where the scintillation index was highest. The GL PDF model also appears to be robust for off-of-beam center laser beam applications.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.7060) Coherence and statistical optics : Turbulence
(290.5930) Scattering : Scintillation
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 20, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: September 19, 2013
Published: October 21, 2013

Citation
Charles Nelson, Svetlana Avramov-Zamurovic, Olga Korotkova, Reza Malek-Madani, Raymond Sova, and Frederic Davidson, "Probability density functions of power-in-bucket and power-in-fiber for an infrared laser beam propagating in the maritime environment," Appl. Opt. 52, 7449-7461 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-31-7449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Das, H. Henniger, B. Epple, C. I. Moore, W. Rabinovich, R. Sova, and D. Young, Requirements and Challenges for Tactical Free-Space Lasercomm (Milcom, 2008).
  2. J. C. Juarez, J. E. Sluz, C. Nelson, M. B. Airola, M. J. Fitch, D. W. Young, D. Terry, F. M. Davidson, J. R. Rottier, and R. M. Sova, “Free-space optical channel characterization in the maritime environment,” Proc. SPIE 7685, 76850H (2010). [CrossRef]
  3. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44(11), 46–51 (2006). [CrossRef]
  4. L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, “Hybrid optical RF airborne communications,” Proc. IEEE 97, 1109–1127 (2009). [CrossRef]
  5. J. Juarez, J. Sluz, C. Nelson, F. Davidson, D. Young, and R. Sova, “Lasercomm demonstration in maritime environment for tactical applications,” in Applications of Lasers for Sensing and Free Space Communications, OSA Technical Digest Series (Optical Society of America, 2010), paper LSMA2.
  6. J. E. Sluz, J. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through a maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 77000D (2010). [CrossRef]
  7. C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Probability density function computations for power-in-bucket and power-in-fiber measurements of an infrared laser beam propagating in the maritime environment,” Proc. SPIE 8038, 80380G (2011). [CrossRef]
  8. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  9. J. R. W. Mclaren, J. C. Thomas, J. L. Mackintosh, K. A. Mudge, K. J. Grant, B. A. Clare, and W. G. Cowley, “Comparison of probability density functions for analyzing irradiance statistics due to atmospheric turbulence,” Appl. Opt. 51, 5996–6002 (2012). [CrossRef]
  10. J. W. Strohbehn, T.-I. Wang, and J. P. Speck, “On the probability density distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10, 59–70 (1975). [CrossRef]
  11. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001). [CrossRef]
  12. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  13. R. Barakat, “First-order intensity and log-intensity probability density functions of light scattered by the turbulent atmosphere in terms of lower-order moments,” J. Opt. Soc. Am. 16, 2269–2274 (1999). [CrossRef]
  14. O. Steinvali, G. Bolander, M. Petersson, O. Gustafsson, F. Berglund, L. Allard, K. Karlsson, T. Larsson, and F. Gustavsson, “Single- and double-path 10.6 μm laser link measurements over sea water,” Opt. Eng. 46, 036001 (2007). [CrossRef]
  15. R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009). [CrossRef]
  16. S. D. Lyke, D. G. Voelz, and M. C. Roggemann, “Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links,” Appl. Opt. 48, 6511–6527 (2009). [CrossRef]
  17. F. Stromqvist Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099–2108 (2007). [CrossRef]
  18. R. Mahon, C. I. Moore, H. R. Burris, M. Ferraro, W. S. Rabinovich, M. Suite, and L. M. Thomas, “Probability density of irradiance fluctuations observed over terrestrial ranges,” Appl. Opt. 50, 6476–6483 (2011). [CrossRef]
  19. J. Aitchison and J. A. C. Brown, The Lognormal Distribution (Cambridge, 1957).
  20. O. Korotkova, S. Avramov-Zamurovic, R. Malek-Madani, and C. Nelson, “Probability density function of the intensity of a laser beam propagating in the maritime environment,” Opt. Express 19, 20322–20331 (2011). [CrossRef]
  21. J. H. Churnside and R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987). [CrossRef]
  22. J. C. Juarez, J. E. Sluz, C. Nelson, M. B. Airola, M. J. Fitch, D. W. Young, D. Terry, F. M. Davidson, J. R. Rottier, and R. M. Sova, “Free-space optical channel characterization in the maritime environment,” presented at the SPIE Defense, Security, and Sensing Conference, April, 2010.
  23. C. Ruilier and F. Cassaing, “Coupling of large telescopes and single-mode waveguides: application to stellar interferometry,” J. Opt. Soc. Am. A 18, 143–149 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited