Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electric-induced oxide breakdown of a charge-coupled device under femtosecond laser irradiation

Not Accessible

Your library or personal account may give you access

Abstract

A femtosecond laser provides an ideal source to investigate the laser-induced damage of a charge-coupled device (CCD) owing to its thermal-free and localized damage properties. For conventional damage mechanisms in the nanosecond laser regime, a leakage current and degradation of a point spread function or modulation transfer function of the CCD are caused by the thermal damages to the oxide and adjacent electrodes. However, the damage mechanisms are quite different for a femtosecond laser. In this paper, an area CCD was subjected to Ti: sapphire laser irradiation at 800 nm by 100 fs single pulses. Electric-induced oxide breakdown is considered to be the primary mechanism to cause a leakage current, and the injured oxide is between the gate and source in the metal-oxide semiconductor field-effect transistor (MOSFET) structure for one CCD pixel. Optical microscopy and scanning electron microscopy are used to investigate the damaged areas and the results show that the electrodes and the oxide underneath are not directly affected by the femtosecond laser, which helps to get rid of the conventional damage mechanisms. For the primary damage mechanism, direct damage by hot carriers, anode hole injection, and an enlarged electric field in the insulating layer are three possible ways to cause oxide breakdown. The leakage current is proved by the decrease of the resistance of electrodes to the substrate. The output saturated images and the dynamics of an area CCD indicate that the leakage current is from an electrode to a light sensing area (or gate to source for a MOSFET), which proves the oxide breakdown mechanism.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors

Chenzhi Zhang, Ludovic Blarre, Rodger M. Walser, and Michael F. Becker
Appl. Opt. 32(27) 5201-5210 (1993)

Mechanisms for the millisecond laser-induced functional damage to silicon charge-coupled imaging sensors

Zewen Li, Xi Wang, Zhonghua Shen, Jian Lu, and Xiaowu Ni
Appl. Opt. 54(3) 378-388 (2015)

Study on the mechanism of a charge-coupled device detector irradiated by millisecond pulse laser under functional loss

Mingxin Li, Guangyong Jin, Yong Tan, Ming Guo, and Pengbo Zhu
Appl. Opt. 55(6) 1257-1261 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved