OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7549–7553

Optical-assembly periodic structure of ferrofluids in a liquid core/metal cladding optical waveguide

Xianping Wang, Cheng Yin, Jingjing Sun, Qingbang Han, Honggen Li, Minghuang Sang, Wen Yuan, and Zhuangqi Cao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 31, pp. 7549-7553 (2013)
http://dx.doi.org/10.1364/AO.52.007549


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos–Hänchen shift, which potentially may be for practical use in novel optical devices.

© 2013 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.3820) Materials : Magneto-optical materials
(230.1150) Optical devices : All-optical devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Devices

History
Original Manuscript: July 12, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: October 8, 2013
Published: October 28, 2013

Citation
Xianping Wang, Cheng Yin, Jingjing Sun, Qingbang Han, Honggen Li, Minghuang Sang, Wen Yuan, and Zhuangqi Cao, "Optical-assembly periodic structure of ferrofluids in a liquid core/metal cladding optical waveguide," Appl. Opt. 52, 7549-7553 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-31-7549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  2. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications (Wiley, 2008).
  3. M. A. Noginov and V. A. Podolskiy, Tutorials in Metamaterials (CRC Press, 2010).
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  5. M. Madou, Fundamentals of Microfabrication (CRC Press, 1997).
  6. Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001). [CrossRef]
  7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003). [CrossRef]
  8. M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009). [CrossRef]
  9. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004). [CrossRef]
  10. F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004). [CrossRef]
  11. G. Wang, J. Huang, and K. Yu, “Tunable photonic Bloch oscillations in electrically modulated photonic crystals,” Opt. Lett. 33, 2200–2202 (2008). [CrossRef]
  12. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002). [CrossRef]
  13. H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013). [CrossRef]
  14. L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012). [CrossRef]
  15. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003). [CrossRef]
  16. C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004). [CrossRef]
  17. R. M. Erb and B. B. Yellen, “Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions,” J. Appl. Phys. 103, 07A312 (2008). [CrossRef]
  18. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008). [CrossRef]
  19. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003). [CrossRef]
  20. J. Hao, H. Li, C. Yin, and Z. Cao, “1.5  mm light beam shift arising from 14  pm variation of wavelength,” J. Opt. Soc. Am. B 27, 1305–1308 (2010). [CrossRef]
  21. Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007). [CrossRef]
  22. W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011). [CrossRef]
  23. D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011). [CrossRef]
  24. N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998). [CrossRef]
  25. J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012). [CrossRef]
  26. C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012). [CrossRef]
  27. Y. Feng, Z. Cao, Q. Shen, and F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46, 58–60 (2007). [CrossRef]
  28. V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55, 85–90 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited